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A Message from the JTRF
Co-General Editors
The Spring 2016 issue contains the usual wide variety of contemporary transportation topics that is 
the distinguishing characteristic of JTRF. Topics in this issue include the following: 

•	 Highway bridge component deterioration 
•	 Driving knowledge and motor vehicle fatalities 
•	 Airline fuel hedging 
•	 Crop supply chain and transportation emissions 
•	 Modified transportation systems and home location
•	 Multimodal connectivity of BRT stations 
•	 Illumination of Overhead Guide Signs
In “Regression Model Evaluation for Highway Bridge Component Deterioration Using 

National Bridge Inventory Data,” Pan Lu and co-authors develop an external validation procedure 
to quantitatively compare the forecasting power of different regression models for highway bridge 
component deterioration. They compared several regression models using the proposed procedure 
and traditional apparent model based on goodness of fit. The procedure developed by the authors 
has four steps, which are (1) select prediction analysis period, (2) data is segregated into two parts, 
one containing the latest data within the analysis period and the rest of the data used to develop 
regression parameters, (3) the predictive model is used to predict the data in the desired time horizon 
compared to the true data, which are the set-aside data and (4) the forecasting skill trend over time 
is analyzed. 

Walter Simmons, Andrew Welki, and Thomas Zlatoper analyze the effect of driving knowledge 
on highway safety in “The Impact of Driving Knowledge on Motor Vehicle Fatalities.” The authors 
estimate regression models on state-level data over the 2005-2010 period. The models contain a 
representative set of motor vehicle fatality determinants including driving knowledge. Driving 
knowledge is measured by performance on the GMAC Insurance National Drivers Test. The authors 
found that real per-capita income, precipitation, seat belt use, and a linear trend were negatively 
related to the motor vehicle death rate and are statistically significant. Also, the ratio of rural to urban 
driving, temperature, the percentage of young drivers, the percentage of old drivers, and alcohol 
consumption were positively related to the death rate and statistically significant. The authors found 
that the performance on the GMAC test has a statistically significant life-saving effect.

In “Airline Fuel Hedging: Do Hedge Horizon and Contract Maturity Matter,” Siew Hoon Lim 
and Peter Turner examined weather the length of hedge horizon and distance to contract maturity 
affect the effectiveness of jet fuel cross hedging (some underlying asset highly correlated to jet fuel 
price). To answer the question in the title the authors examine the hedging performance of four 
common jet fuel proxies: West Texas Intermediate (WTI) crude oil, Brent crude oil (Brent), heating 
oil, and gasoil. The authors found that regardless of the distance to contract maturity, weekly hedge 
horizon has the best effectiveness for jet fuel proxies like heating oil, Brent, WTI, and gasoil. They 
found that heating oil is the best jet fuel proxy for all hedge horizons and contract maturities. Also 
the hedge effectiveness of heating oil is higher for one-month and three-month contracts. 

T. Edward Yu and co-authors conduct a study that minimizes total cost for single feedstock 
supply chains for two dedicated energy crops in “Dedicated Crops Supply Chains and Associated 
Feedstock Transportation Emissions: A Case Study of Tennessee.” The dedicated energy crops are 
perennial switchgrass and biomass sorghum. Using a spatial optimization model of greenhouse 
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gas emissions from the transport of feedstock to the conversion facility were estimated for the 
respective feedstock supply chains. The authors found that different demand for land types of the 
two feedstocks and the geographically diverse landscape across the state affect the economics of 
bioenergy crop supply chains and feedstock transportation emissions. The authors concluded that 
switchgrass is more suitable than biomass sorghum for biofuel production in Tennessee based on the 
supply chains cost and feedstock hauling emissions.

In “Welfare Measures to Reflect Home Location Options When Transportation Systems Are 
Modified,” Shuhong Ma and Kara Kockelman examine the welfare (willingness to pay impacts) 
of transportation system changes. The authors do this by bringing residential location choice into a 
three-layer nested logit model to anticipate regional welfare impacts of transportation system shifts 
using consumer surplus. The model is applied to a sample of 60 Austin, Texas zones to estimate 
home buyers’ welfare impacts across various scenarios with different transit fares, auto operating 
costs, travel times, and home prices. The results suggest that new locators’ choice probabilities for 
rural and suburban zones are more sensitive to changing regional access, while urban and central 
business zone choice probabilities are more impacted by home price shifts. Also they noted that 
auto costs play a more important role in residential location choices in these simulations than those 
of transit. 

Mintesnot Woldeamanuel and Craig Olwert develop a multimodality Index (MI) to evaluate the 
accessibility and convenience of transit use in “The Multimodal Connectivity at Bus Rapid Transit 
(BRT) Stations and the Impact on Ridership.” They point out that the integration of the Orange Line 
BRT system in Los Angeles with other travel modes, including bicycles, regular buses, and cars, 
was analyzed using field observations and LA Metro data to create an MI. The major objective is to 
determine if ridership is higher at stations with better multimodal connectivity. The authors found 
that multimodal connectivity varies across stations on the Orange Line BRT system. However, a 
positive relationship exists between ridership and the MI, indicating that MI is a reliable predictor 
of transit ridership and a useful tool for transit planning. 

In “Effective Light Source for Illuminating Overhead Guide Signs and Improving Roadway 
Safety,” Mohammed Obeidat and Malgorzata Rys compare the illumination of five alternate light 
sources. The authors analyze the illumination of High Pressure Sodium (HPS), Metal Halide (MH), 
Mercury Vapor (MV), induction lighting and Light Emitting Diode (LED). The authors conducted 
a laboratory experiment to compare the light distribution of each light source. Also, a cost analysis 
was performed to compare initial, maintenance, and operating cost components of the light sources. 
The authors found that HPS was the optimum light source, and induction lighting was the least cost 
source of the five light sources and provided the best overall performance when considering initial 
costs, operating cost, expected maintenance, and sign illuminance.

Michael W. Babcock       James Nolan
Co-General Editor-JTRF       Co-General Editor-JTRF
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by Pan Lu, Shiling Pei, and Denver Tolliver

Accurate prediction of bridge component condition over time is critical for determining a reliable 
maintenance, repair, and rehabilitation (MRR) strategy for highway bridges. Based on bridge 
inspection data, regression models are the most-widely adopted tools used by researchers and state 
agencies to predict future bridge condition (FHWA 2007). Various regression models can produce 
quite	different	results	because	of	the	differences	in	modeling	assumptions.	The	evaluation	of	model	
quality can be challenging and sometimes subjective. In this study, an external validation procedure 
was	developed	to	quantitatively	compare	the	forecasting	power	of	different	regression	models	for	
highway bridge component deterioration. Several regression models for highway bridge component 
rating over time were compared using the proposed procedure and a traditional apparent model 
evaluation	method	based	on	the	goodness-of-fit	to	data.	The	results	obtained	by	applying	the	two	
methods are compared and discussed in this paper.

INTRODUCTION

Bridge deterioration is a serious problem across the United States. According to the United States 
Department of Transportation (USDOT 2014), more than 604,000 bridges are located on public roads 
in the United States, with approximately 50% of them built before 1966 (during initial interstate 
highway construction). Bridges in this age group will reach their 50-year milestone in the next three 
years. Although 50 years was intended originally as the design life of many bridges, their service life 
can be extended through diligent maintenance and rehabilitation (Tolliver and Lu 2011). The efficient 
use of public funds for fixing and maintaining bridges to keep them in adequate condition requires 
an effective bridge asset management framework. To address this issue, transportation management 
agencies worldwide have begun to adopt bridge management systems (BMS). A BMS is used to 
determine the optimum future bridge maintenance, repair, and rehabilitation (MRR) strategy at the 
lowest possible life-cycle cost based on the forecasted bridge conditions (Frangopol et al. 2000). 

In the United States, highway bridge ratings typically consist of three major components: deck, 
superstructure, and substructure. The components deteriorate as a result of operating conditions and 
external environmental loads. Because of the importance of these components for normal operation 
and safety, prediction models for component deterioration are routinely developed to assess the 
conditions of bridges for a given future time span.

Among all predictive models, regression models are the most widely adopted types for 
engineering applications (FHWA 2007). Regression models forecast future bridges’ performances 
from a set of explanatory variables via equations developed based on past data. 

Specifically for bridge condition prediction, as stated by J. Lee et al. (2008), the major challenge 
faced by current bridge deterioration modeling techniques is the lack of reliable prediction modeling 
of future bridge condition ratings. For a given set of past bridge condition data, researchers can 
potentially apply all the predictive models that are selected based on in-sample goodness-of-fit 
statistics, and it is likely that predictions from all these models will be different. This presents 
a difficulty with regard to BMS because these different prediction results can lead to different 
management strategies. From an end-user perspective, no matter how complicated or simple the 
models are, prediction accuracy is the most important characteristics of the model. Thus the selection 
of predictive models should not be based on the modeler’s experience or the model goodness-of-fit 

Regression Model Evaluation for Highway Bridge 
Component Deterioration Using National Bridge 
Inventory Data
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with respect to in-sample data, but on the model’s ability to accurately predict future behavior. This 
study will develop and apply an objective model evaluation procedure to reveal the true forecast 
power of the bridge component regression models so that engineers and decision makers can use this 
approach to gain confidence in bridge deterioration prediction. No existing literature has addressed 
this issue. The proposed procedure will be applied to the comparison of two regression models 
constructed using bridge component rating data in Illinois.

LITERATURE REVIEW

Regression model forecast verification is sometimes called validation, or evaluation. The purpose 
of this process is to help assess the specific strengths and deficiencies of regression models when 
they are used to forecast values of the dependent variable using forecasted values of the explanatory 
variables. This process has the potential to justify uses of the model for forecasting and support 
better decision making (Wilks 2006). Depending on the process used in validation, there are three 
types of evaluation procedures: apparent, internal, and external (Steyerberg and Harrell 2014). 
Apparent validation validates a model’s goodness-of-fit on the entire dataset used to construct the 
model, which may not reveal the true predictive ability of the model because the exact same dataset 
is used for model development and validation test. The estimation of the prediction ability has been 
shown to be overly optimistic with this validation method (Witten and Frank 1999).

Internal validation evaluates sample data from the same underlying population as the sample 
data used to develop the model. Usually, it is difficult to obtain new sample data from the same 
population for validation. In the literature, the most commonly found method for internal validation 
is data-splitting (McCarthy 1976; Clementi et al. 2001; Shao 1993; Snee 1977; Lu and Tolliver 
2012).

Simple data splitting is a subsampling procedure also known as resampling. It re-sizes the 
sample data into two sub-datasets and uses one random subset for validation and the other for model 
development. There are several data-splitting techniques found in literature (Snee 1977): 1) Cross 
validation is a repeated data-splitting technique, it repeats the simple data-splitting analysis many 
times and the predictions are averaged. 2) The bootstrapping procedure is different from splitting 
in that bootstrapping samples are taken with replacements from the original sample while data-
splitting samples are selected without replacement. 3) The jack-knife technique is very similar to 
repeated data-splitting except it only takes one of the records from the original sample out at one 
time and repeated as many times as the total number of records in the original sample.

These procedures are powerful techniques when external validation is not possible. However, 
external validation is the most accurate and unbiased test for the model and the entire data collection 
process as stated by Harrell et al. (1996). External validation’s main emphasis is that predictions from 
the previously developed model are tested on a new dataset that is different from the development 
population.

In the following sections, it will be shown that the data-based procedure proposed in this study 
can also be considered as a type of external validation with time delay and will reveal the model’s 
true forecasting power in the past. The procedure is unique in that it focuses on long-term prediction 
power evaluation, which has not been investigated extensively in engineering applications. Several 
key prediction accuracy measures will be used in the examples and are introduced in this section.
 
DATABASE

The National Bridge Inventory (NBI) ASCII database is a unified database compiled by the Federal 
Highway Administration (FHWA) for all bridges and tunnels in the United States that have public 
roads passing above or below (FHWA 2007).The database provides information on 116 items and 
432 characteristics of each bridge, including, but not limited to, bridge type and specification, bridge 
geometric information, bridge functional description, operational condition, bridge inspection data, 
and bridge construction and reconstruction records. The detailed information for each item and 
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characters can be found in the FHWA NBI reference report (FHWA 1995). The data in NBI is 
collected by state highway agencies and reported to FHWA annually. 

Within NBI inspection data, there are three primary component ratings of special importance 
to bridge asset management: deck condition rating (DCR), superstructure condition rating (SPCR), 
and substructure condition rating (SBCR). The NBI rating system includes eight interim levels 
between excellent (9) and failure (0).  For detailed information regarding to NBI inspection data, 
viewers are referred to NCHRP (2009). 

METHODOLOGY

Prediction Accuracy Measures

Cook and Kairiukstis (1990) state that reduction of error (RE) “should assume a central role in the 
verification procedure” (p. 181). RE is an example of a forecast skill statistic (Wilks 2006). Wilks 
(2006) defined forecast skill as the relative accuracy of a set of forecasts with respect to some set 
of standard controls, which are usually the average values of the predictions. The equation used to 
calculate RE can be expressed in the following Equation (1).

(1)                                                                                                                  

Where SSEv = sum of squares of validation errors between observed and predicted values over 
the validation period and SSEref  = sum of squares of validation errors between observed values and 
mean of the predictions often known as control values or reference values over the validation period.

The difference between observed and predicted values is defined as validation error noted as 
e(i) . It can be mathematically expressed as Equation (2).

(2)                                                                                                                

Where yi and  are the observed and predicted values of the predictions for validation data 
point i.

The sum of the squares of errors for validation, SSEv, can be expressed as Equation (3) and the 
sum of squares of errors for reference, SSEref, can be expressed as Equation (4).

(3)                                                                                                             

(4)                                                                                                 

Where nv is the total number of data points in the validation dataset and ӯ is the mean of the 
predictions, which usually serves as a reference or control value. Theoretically, the value of RE can 
range from negative infinity to one, where one indicates perfect prediction for the validation data set. 
It will only occur when all the residuals for validation data are zero. On the other hand, if SSEv is 
much greater than SSEref, RE can be negative and large. As a rule of thumb, a positive RE indicates 
that the regression model on average has some forecast skill. Contrastingly, if RE ≤ 0, the model is 
deemed to have no skill to predict (Wilks 2006; Cooks and Kairiukstis 1990). The similarity in form 
of the equations for RE and regression R2 expressed as Equation (5) suggests that RE can also be 
used as validation evidence for R2. The closer the values of RE and R2 are to each other, the more 
the model is accepted as a predictive tool.

(5)                

In this research, adjusted R-squared is reported to take account of the phenomenon of the R-
squared automatically and spuriously increasing when extra explanatory variables are added to the 
model. Adjusted R-squared can be written as Equation (6).

SSEv = Σ e(i)
2nv

i= 1
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(6)                

Other commonly used apparent model validation criteria, including Akaike’s Information 
Criteria (AIC), Bayesian Information Criteria (BIC), and Mean Absolute Error (MAE), are also 
selected in this research and compared with the RE external model evaluation method. The model 
with the smallest AIC, BIC, and MSE is deemed the “best” model based on apparent validation 
since it minimizes the difference from the given model to the “true” model. In other words, that 
smaller AIC, BIC, or MSE indicates better model/predictor. They can be mathematically expressed 
as Equation (7), (8), and (9).

(7)                                                                                               

(8)                                                                        

(9)                                                                                                     

Where n is in-sample size, SSE is the sum of the squares of errors, ei is validation error, k is the 
number of independent variables, MSE is mean squared error, and σ2 is error variance.

Forecasting Power Evaluation Procedure

For a predictive model, it is critical to have a quantitative measure of prediction accuracy. More 
important, given the many similar regression modeling choices, the user needs to be able to tell 
with confidence which model will yield the best prediction over a given period of time, which can 
be the analysis period. The deterioration of a bridge is a relatively slow process. With bridge rating 
indicators collected annually, it is difficult to detect any trend unless one uses data over a long 
time span. If all existing data are used to construct the model, there will be no independent data 
left for validation purposes. In this study, it is proposed to artificially “reserve” part of the data as 
the independent validation “pool” (external data) to use in evaluating long-term regression model 
quality. Splitting the existing dataset for this process can be application-specific. For example, if it is 
of interest to a transportation agency to predict bridge condition in five years, the validation datasets 
should cover at least five years of data to reflect the prediction span, which will at least provide the 
forecasting power within the analysis periods. 

The procedure is rather straightforward and can be summarized in four steps: (1) A user select 
prediction analysis period that is typical for the implementation of the model of interest. (2) Data 
should be segregated into two parts, one containing the latest data at least within the analysis period 
identified in step 1, which will be kept unused during the development of the model, with the rest of 
the data used to develop regression parameters for the selected model of choice (assuming regression 
models are used).  The data set aside will provide forecasting accuracy validation information for 
the time horizon that is at least the same as the analysis period. (3) The predictive model and its 
variations (may include other model types also) will be used to predict the data in the desired time 
horizon and compared to the true data, which is the set-aside data. Based on this comparison, a 
group of physically meaningful indicators can be derived (based on the application of the model 
prediction) for the quality and accuracy of the model. (4) Based on these indicators, the forecasting 
skill trend over time is analyzed and the forecasting model selection is judged based on the analysis 
results. In short, this approach essentially “rolls back” the modeler in time, assuming the prediction 
was done N years ago (N is the needed prediction time span) without knowing the current data. 
However, the forecasting model is selected by using the current data. The resulting best model is 
truly the best model N years ago. As a result, presumption of the procedure is that the model that 
performs well N years ago will continue to perform well N years in the future.
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This presumption brings about the limitation of using this approach: The interactive mechanism 
between independent variables and dependent variables needs to be close to stationary over the 
prediction time span. Or in other words, the prediction accuracy of the model will not change 
dramatically over time. For example, if a phenomenon was affected by certain factors (independent 
variables) that were not present in the past (e.g., adoption of a new bridge design detail, new deicing 
chemical), this approach will not apply. However, under such conditions, almost all statistical 
regression approaches will be invalid as that piece of information does not exist in any data pool. In 
such cases, only the physically or mechanistically derived models can be used for prediction. The 
proposed approach should have very accurate results for any process that has a stationary underline-
driven mechanism, i.e., the influence of independent variables on the dependent variables does not 
change dramatically with time. Even for cases where the internal driven mechanism does change 
over time, as long as the change is slow relative to the prediction time span, the approach could still 
be used in a piece-wise linear fashion where only the portion of the data closest to the prediction 
time span is used to construct the model. It is envisioned that this approach can be applied to many 
engineering problems to assist decision making.

BRIDGE RATING PREDICTION MODEL EVALUATIONS AND FINDINGS

Bolukbasi et al. (2004) recommended bridge component deterioration models with third-degree 
polynomial functions of bridge age. The research developed third-degree polynomial regression 
models with 2,601 Illinois bridge NBI inspection records from 1976 to 1998 and recommended that 
the data should be filtered by eliminating bridges for which reconstruction works are not recorded. 

To illustrate the application of the proposed procedure, two candidate regression models 
for predicting steel bridge deck component ratings performance in Illinois were evaluated and 
compared by both in-sample goodness-of-fit statistics as apparent validation method and the data-
based prediction power evaluation procedure as external validation method. One of the prediction 
models duplicates the work of Bolukbasi et al. (2004) with and without a filtering process. The 
filtering method is based on trends in rating values. If the data show an increase in the value of 
the condition rating, then unrecorded repair and/or reconstruction activity is assumed and the data 
observation is deleted. For detailed filtering method, readers are referred to Bolukbasi et al. (2014). 
Steel bridge deck deterioration models are constructed based on Illinois NBI data from 1994 to 
1999.  The same data set is used to construct the other multiple linear regression model through 
an explicit enumeration of all possible independent variables to the best knowledge of the authors. 
Both regression models will be based on the dataset with and without a filtering process, so for 
comparison, there will be four models: polynomial model (Bolukbasi et al.’s third degree polynomial 
regression model) with a data filtering process, polynomial model without a data filtering process, 
full model (multiple linear regression model) with a data filter process, full model without a data 
filtering process. Illinois NBI bridge population data from 2000 to 2014 is set aside for the purpose 
of external data validation. 

This example looked at the accuracy of various models in a 15-year prediction horizon, with 
some interesting observations obtained and discussed in this paper.

Overview of Models and Comparison

Regression models for bridge component deterioration are used by many transportation agencies to 
assist in bridge inventory management. In research on this subject, a few key explanatory variables 
were found to influence the prediction accuracy. These include the age of the bridge, traffic load, 
jurisdiction of the bridge, and deicing practices, just to name a few. A multiple linear regression 
model is constructed through an explicit enumeration of all possible explanatory variables available 
to the authors, and the “best” fitted model is selected based on model selection and is referred to 
as the “full” model afterward. The “full” model has “age” as continuous independent variable, 
traffic (Average Daily Traffic [ADT]) and bridge design as categorical variables. Traffic, ADT, 
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can be forecasted with various travel demand models and adjusted by seasonal, directional count 
data. In the United States, prototypical vehicles are defined for analyzing bridge load designs. The 
alphanumeric codes “H” or “HS” denote a single-unit truck and a tractor pulling a semitrailer, 
respectively. The numeric suffix represents the gross weight in tons for H truck or weight on the first 
two axle sets of the HS truck. For example, H_10 denotes a truck with a gross weight of 10 tons. A 
duplication of the work of Bolukbasi et al. (2004) to construct a third degree polynomial model is 
also selected for the purpose of comparison and refers to “polynomial” model. Both two models are 
constructed based on the data set with and without filtering process. In this study, both apparent and 
external validation will be performed for both “full” and “polynomial” models, and the indicators 
described in earlier sections will be used to evaluate model quality.

First, two sets of regression models were constructed as shown in Table 1 and some selected 
apparent model validation indicators, adjusted R-squared, AIC, MSE, and BIC,  are also shown in 
Table 1.  One can tell that model constructed with data filtering has smaller AIC and BIC values and 
larger adjusted R-squared values by comparing column 2 and 3 for polynomial model and column 4 
and 5 for full model. This finding conforms with Bolukbasi et al. (2014), so the data filtering process 
to remove unrecorded rehabilitation or reconstruction effects is needed before model construction. 

Full models are more likely to be selected over polynomial models based on larger adjusted 
R-squared value, smaller MSE values, and smaller AIC and BIC values with respect to apparent 
validation criteria by comparing column 2 and 4 for adjusted data set and column 3 and 5 for 
unadjusted data set. Note that the full model contains polynomial model, and, based on apparent 
validation criteria, the full model is believed to be the best model and is preferred.

Note that even the full model only has 35% of variances explained by the independent 
variables, that is because many variances that could cause the bridge deterioration are not available 
and excluded in the model, such as climate information and maintenance funding level status. The 
apparent evaluation method is designed to identify significant explanatory factors and can select 
the best-fitted model for the sample data. However, it is still questionable if the model selected by 
the apparent validation method is suitable for short- and long-term forecasting. In other words, the 
model with the highest R-squared may not yield the best forecasting results.

Model Validation and Comparison Results

Once the regression model apparent validation analysis was done using all Illinois  NBI 1994-
1999 data and the NBI datasets from 2000-2014 were kept as the external validation data pool; 
model external validation  can be performed and analyzed by using the RE indicator. The validation 
datasets can be considered external datasets for three reasons: 1) NBI reports data annually in 
separate datasets that will lead to differences in various aspects of the data such as data collection 
techniques, data collection personnel, and possibly the definition of variables. 2) the bridges included 
in validation datasets and model construction data sets vary because bridges may be closed or open 
to traffic for various reasons in different years. 3) NBI inspection records in each single year contain 
the whole bridge population information but not sample information.

To illustrate the external validation method result, both deck models constructed with a data 
filtering procedure to remove unrecorded rehabilitation or reconstruction effects are compared with 
prediction power indicator, RE. As shown in Table 2, RE values for both models are calculated for 
each validation data set. 
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Table 1: Parameter Estimates and Statics with Data of 1994-1999

Deck Model

Polynomial 
model with data 

filtering

Polynomial 
model without 
data filtering

Full model with 
data filtering

Full model 
without data 

filtering
N 20643 63439 20643 63439
Adjusted
R-squared 0.3258 0.2686 0.3561 0.2967
AIC 15573 38767 14637 36284
MSE 2.13 1.84232 2.03079 1.7717
BIC 15575 38769 14639 36286
Intercept 8.2709 8.19543 7.85967 8.0987
Age -0.08254 -0.095 -0.09026 -0.10561
Age2 0.00097214 0.00123 0.00128 0.00148
Age3 -0.0000053 -0.00000613 -0.00000723 -0.00000754
ADT<=1000 N/A N/A - -
ADT<=5000 N/A N/A -0.36832 -0.27658
ADT<=10000 N/A N/A -0.43792 -0.44108
ADT>10000 N/A N/A -0.64814 -0.44701
H_10 N/A N/A 0.68265 0.47337
H_15 N/A N/A 0.68574 0.45804
H_20 N/A N/A 0.62199 0.45024
HS_15 N/A N/A 0.90066 0.83339
HS_20 N/A N/A 0.84992 0.51066
HS_20P N/A N/A 0.74399 0.35579
HS_25 N/A N/A - -

Note: “N/A” indicate that the corresponding variables are not considered in the model; “-“indicate that the 
corresponding variable is a reference variable for the categorical variable; all independent variables are 
significant at 99% of confidence.
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Table 2: Reduction of Error Forecasting Power with Data of 2000-2014

Obs Year Observations Full Model RE Polynomial Model RE RE 
Difference

1 2000 5491 0.26985 0.24409 0.026

2 2001 7219 0.25568 0.24016 0.016

3 2002 7122 0.21916 0.20442 0.015

4 2003 7034 0.20004 0.19137 0.008

5 2004 6943 0.21934 0.21097 0.008

6 2005 6869 0.20258 0.19101 0.012

7 2006 6763 0.19298 0.18161 0.011

8 2007 6707 0.17798 0.16430 0.014

9 2008 6664 0.17893 0.16412 0.015

10 2009 6631 0.19466 0.18045 0.014

11 2010 6630 0.17018 0.16121 0.009

12 2011 6680 0.18777 0.18349 0.004

13 2012 6660 0.18815 0.18490 0.003

14 2013 6664 0.18011 0.18374 -0.004

15 2014 6601 0.14751 0.15336 -0.006

One can tell from Table 2 that there are 15 external validation datasets and the data size ranges 
from 5,491 to 7,219.  As stated earlier, an RE of 1 indicates perfect prediction for the validation 
dataset. As a rule of thumb, a positive RE indicates that the regression model, on average, has some 
forecast ability with higher values indicating better forecasting, and the closer the values of RE are 
to each other, the more the model is accepted as a predictive tool (Wilks 2006; Cooks and Kairiukstis 
1990). Both models’ RE values start at values close to, but less than, the models’ adjusted R-squared 
value: 0.26985 vs 0.3561 (0.086 difference) and 0.24409 vs 0.3258 (0.082 difference). The finding 
shows that the evaluation adjusted R-squared factor provides close estimation of the true prediction 
accuracy for the example models at the beginning of the validation years, but the adjusted R-squared 
evaluation might be optimistic for forecasting power, especially for long-term analysis.

RE values all are positive, indicating a certain level of forecasting power, which is promising 
with the true external observations. The full model has a relatively higher forecasting power when 
compared to the polynomial model for the first 13 years, and then the polynomial model shows a 
higher forecasting power for the 14th and 15th years. In general, the forecasting power difference 
between the two models, column 6, shows that forecasting power of the two models decreases over 
the 15 validation periods. This finding indicates that the full model may be the preferred model to 
forecast near-term condition; but for long-term forecasting purpose, e.g., forecasting condition over 
10 years, the polynomial model may be preferred.
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Reasons for this can be that apparent validation selects the full model by best describing the 
interactive mechanism between independent variables and dependent variables for the same sample 
dataset used to build the model. However, when applying the model forecasting ability to a future 
dataset, the interactive mechanism between independent variables and dependent variables may be 
unchanged over the short prediction time span but may change for a longer prediction period. The 
full model involves more independent variables than the polynomial model (which only involves 
one variable, age), and the likelihood that certain factors included in the full model will change in 
long time span is higher than in the polynomial model. When that happens, the full model loses its 
forecasting power compared to the polynomial model or, in other words, the full model introduces 
more errors than the polynomial model.

Also note that by examining RE values for both models by year, column 4 and column 5 from 
Table 2, one can tell that forecasting power represented by RE can both increase and decrease for a 
short time, but in general and overall, the forecasting power decreases over the long term.

To further illustrate the forecasting ability of the two models, the authors repeat the proposed 
procedures for both superstructure and substructure models with a data filtering procedure 
considered. The apparent validation results are shown in Table 3, and external validation results are 
shown in Figure 1. From Table 3, the full model is preferred according to the apparent validation 
method for both substructure and superstructure models with higher adjusted R-squared, smaller 
AIC, smaller MSE, and smaller BIC values.
 
Table 3: Sub- and Super-Structure Model Statics with Data of 1994-1999

Deck Model

Substructure
Polynomial 

model
Substructure

full model

Superstructure
Polynomial 

model
Superstructure

full model
N 20643 20643 20643 20643

Adjusted
R-squared 0.4287 0.4949 0.4225 0.4660

AIC 15853 13322 13668 12068
MSE 2.155 1.91 1.94 1.79
BIC 15855 13324 13670 12070

Shown from Figure 1, RE values for all models show up-and-down patterns in the short-run; 
however, they all show decreasing trends over the 15 validation periods. The full model is preferred 
at the beginning and the polynomial model shows better forecasting ability at validation years 13 
and 14, respectively, for deck and superstructure models. For the substructure models, the full 
model is preferred over the 15 validation periods. Note that to determine the “best” model for its 
forecasting ability, especially for long-term planning, external data evaluation with roll-back data is 
recommended. External data evaluation will result in a different model preference compared with 
apparent model validation method.
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Figure 1: Reduction of Error for Deck, Super-, and Sub- Structure Full and Polynomial Models

CONCLUSIONS AND RECOMMENDATIONS

The following are the main conclusion the study.

•	 The research by Bolukbasi et al. (2014) is verified and confirmed with new data from Illinois. The 
NBI data need to be filtered to remove the effect of unrecorded rehabilitation or reconstruction 
work to develop reasonable deterioration curves for bridges.

•	 The apparent evaluation method is valid for discovering the explanatory relationship between 
dependent and independent variables. However, it may not suitable for forecasting model 
selection.

•	 For the purpose of forecasting ability, external data evaluation with roll-back data is 
recommended. And the roll-back period should cover the forecasting period to reveal both 
short- and long-term forecasting power.
This paper proposes and demonstrates an objective, data-based approach for regression model 

forecasting ability evaluation.  If the model is selected based on apparent evaluation only, then 
the forecasting outcome may not be accurate, especially for long-term planning, maintenance, 
rehabilitation, and replacement decisions. In this study, both a simple model as polynomial model 
and a full model selected by the apparent evaluation method have been generated for steel bridge 
component deterioration that can be used in any MRR decisions with confidence. In addition to 
producing deterioration curves, the methods described in the paper allow engineers to select the best 
forecasting model depending on their planning horizon. Finally, it is recommended to expand the 
use of the proposed procedure to help DOT decision making by developing a performance-based 
prediction model evaluation criteria.
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by Walter O. Simmons, Andrew M. Welki, and Thomas J. Zlatoper

This	paper	analyzes	the	influence	of	driving	knowledge	on	highway	safety	by	estimating	regression	
models on U.S. state-level data over six years (2005 through 2010). The models incorporate a 
representative set of motor vehicle fatality determinants. Driving knowledge—as measured by 
performance	on	 the	GMAC	 Insurance	National	Drivers	Test—has	a	 statistically	 significant	 life-
saving	effect.	Negatively	related	to	the	motor	vehicle	death	rate	and	statistically	significant	are:	real	
per	capita	income,	precipitation,	seat	belt	use,	and	a	linear	trend.	Statistically	significant	positive	
associations with the rate are found for:  the ratio of rural to urban driving, temperature, the 
percentage of young drivers, the percentage of old drivers, and alcohol consumption.

INTRODUCTION

While trending downward in recent years, annual motor vehicle deaths in the U.S. remain large in 
number. For example, they totaled 43,510 in 2005 and 32,999 in 2010 (National Highway Traffic 
Safety Administration [NHTSA] 2013, p. 5). Of interest to policy makers are initiatives that can lead 
to further declines in roadway fatalities.

Some researchers have suggested that efforts to increase driving knowledge could improve 
road safety. For example, Amarasingha and Dissanayake (2013) note that education programs 
that increase awareness of unsafe practices (e.g., failure to yield right of way, driving too fast for 
conditions) could reduce risk for young drivers.  However, the effectiveness of such initiatives 
requires that increased knowledge results in safer driving.

Does greater driving knowledge contribute to safer highway travel? This paper addresses this 
question.  Specifically, it estimates the relationship between driving knowledge, as measured by 
performance on the nationally administered GMAC Insurance National Drivers Test, and U.S. 
motor vehicle fatalities.1 The estimation controls for the influence of a representative collection of 
highway death determinants.

This study has the following format: The first section discusses previous research on the 
determinants of U.S. motor vehicle deaths with a particular focus on the impact of driver education. 
A model that explains these deaths is specified in the second section. The third section describes the 
data set used in the analysis. Regression estimates of the model are reported and discussed in the 
fourth section. The final section summarizes the paper’s findings.

BACKGROUND

There has been considerable research on the determinants of U.S. motor vehicle safety. Loeb, 
Talley and Zlatoper (1994) summarize the collective findings of several selected empirical studies 
to that point in time. The studies typically use historical data and multivariate statistical techniques 
(e.g., multiple regression analysis) to estimate the impact of various potential determinants on 
safety outcome measures (e.g., highway accidents, injuries and fatalities). The determinants can 
be categorized as economic (e.g., accident cost, income, fuel price, economic activity); driver-
related (e.g., alcohol use, speed, gender, age, amount of travel); vehicle-related (e.g., vehicle type, 
size, mandated vehicle safety features, age); highway-related (e.g., type of roadway, location); 
environmental (e.g., traffic density, weather, lighting, altitude); and other considerations (e.g., 
hospital access, geographical area, and time factors).2 Some studies analyze the effectiveness of 
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deterrent policies (e.g., motor vehicle inspection, minimum legal drinking age, speed limits, seat 
belt laws).  

During the last 20 years, researchers have analyzed the effect of cell phone use on highway 
safety. Other determinants considered include education levels, crime rates, and suicide rates. In 
addition to conventional techniques such as multiple linear regression, Bayesian estimation methods 
have been increasingly utilized.  Blattenberger, Fowles, and Loeb (2013) summarize the collective 
findings of the more recent empirical work.

This body of highway safety research includes efforts to understand how and if drivers’ tests 
and the driver education process affect road safety. Two notable research strands of driver education 
are the written test and the graduated licensing programs (GDL). Research about the written driving 
test comprises the early stages of the analysis, while more recent work emphasizes contributory 
factors and the GDL program. The discussion here follows that order.

One anticipates that a better understanding of the “rules of the road” should create a safer 
driving environment.  Arthur and Doverspike (2001) extended that idea to examine the role of driver 
personality and its effect on crashes. Their work adds to written driver’s test research by Hill and 
Jamieson (1978); McKnight and Edwards (1982); and Struckman-Johnson and others (1989). Arthur 
and Doverspike (2001) note that support for driving knowledge as a safety enhancer is equivocal. 
They, however, find that a driver personality variable, conscientiousness, is negatively related to the 
number of crashes.

More recent research focuses on changes in the driver education process, more specifically, the 
experiential portion of young driver development. Over time, all states moved to a GDL process. 
These activities frame the aspiring driver’s road experience prior to acquiring full driving privileges. 
Each GDL stage works on specific circumstances. The ultimate goal of the driver preparation process 
is a combination of practical physical experiences and a knowledge of the “rules of the road” that 
produces a driver less likely to contribute to an unsafe world for the driving public.

Many studies examined the effects of GDL programs on reducing teenage crashes. Typically, 
each study focused on the experience of a specific state. States analyzed are:  Missouri by Bernard 
and Sweeney (2015); Kansas by Amarasingha and Dissanayake (2013); Maryland, Florida, and 
Michigan by Ehsani and others (2013); Utah by Hyde and others (2005); and Georgia by Rios 
and others (2006). The Bernard and Sweeney paper (2015), which examines the contributing 
circumstances associated with teenage driver fatalities, provides a good list of analyses of this type.

Bernard and Sweeney (2015) use data linking contributory factors to crash fatalities. 
Contributory factors can then inform the types of changes needed to enhance the effectiveness of 
GDL programs. While not universal across all state studies, the research results suggest that GDL 
programs reduced crash rates for teenage drivers.

This paper extends previous work in this area in a number of ways. It revisits the effect of 
written drivers’ tests on road safety. Of particular note is the use of data on a common test collected 
from drivers across all 50 states. This permits interstate comparison as a standard measure of driving 
knowledge is utilized.

Additionally, although individual accident data are not used, the state-level (aggregated) data 
includes variables that control for micro-level causal factors (e.g., alcohol use). The explanatory 
factors are representative of the types used in the larger body of highway safety research. Embedded 
within these variables are factors examined in state-specific studies to inform the GDL process.
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MODEL

Four categories of explanatory factors are explicitly included in the model: economic conditions, 
locational factors, weather conditions, and driver characteristics. The model’s general form is:

(1)  DEATHRT = f(INCOME, RURURB, TEMP, PRECIP, YOUNG,
 OLD, ALCOHOL, SBELTUSE, KNOWLEDGE)

where    
 
 
 
 
 
 
 
 
 
 

The expected relationship between each explanatory factor and the death rate is explained below.
Income represents economic conditions.  Its impact on highway fatalities is uncertain a priori. 

Higher income should increase the demand for safety and driving intensity, assuming that both 
are normal goods.3 Due to these offsetting considerations, Peltzman (1975) conjectures that the 
direction of the relationship between income and deaths is unclear. Loeb, Talley, and Zlatoper (1994, 
pp. 18-19) report that time-series studies provide evidence of a positive relationship, while cross-
sectional and pooled analyses indicate a negative association.

Speeds are generally higher during rural travel than during urban travel. As a result, the chance 
of death is likely greater when an accident occurs in a rural location. Loeb, Talley, and Zlatoper 
(1994, pp. 32) cite time-series and cross-sectional studies providing statistically significant evidence 
of inverse associations between motor vehicle fatality measures and the proportion of urban highway 
travel. Given these findings, the locational measure employed here—the ratio of rural to urban 
travel—is anticipated to be positively related to the death rate.

Regarding weather conditions, Loeb, Talley, and Zlatoper (1994, p. 34) report that cross-
sectional analyses find that temperature and precipitation have statistically significant positive 
and negative associations, respectively, with highway fatality measures. Higher temperatures may 
encourage more driving and faster speeds, while more precipitation may foster the opposite. Based 
on these results, the same associations are expected in this study.

Age is one of the driver characteristics accounted for here. Younger motorists have less experience 
and are more inclined to take more risks; and older drivers are subject to deterioration in physical 
factors (e.g., eyesight and reflexes) that influence driving safety. Due to these considerations, younger 
and older drivers may be more susceptible to motor vehicle accidents and deaths. However, Loeb, 
Talley, and Zlatoper (1994, pp. 24-25) note that the results in statistical studies on the relationships 
between these two age groups and death measures are mixed.  Given the inconclusive evidence, the 
anticipated relationship between the extent of driving involvement by the youngest and oldest age 
groups and highway fatality measures is uncertain a priori.

Alcohol usage is another driver characteristic included in this analysis. According to 
conventional wisdom, intoxicated drivers are more likely to be involved in fatal crashes. Loeb, 
Talley, and Zlatoper (1994, pp. 20-21) catalogue research evidence of a significant direct relationship 
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between alcohol consumption and motor vehicle death measures in the U.S. The same association 
is anticipated in this study.

Another driver characteristic accounted for is seat belt use. According to NHTSA (2001, 
Exhibit 6) estimates, the manual lap-shoulder belt is highly effective in saving lives of car drivers. 
In contrast, Garbacz (1990) finds that seat belt use has no statistically significant effect on total or 
driver or overall occupant (drivers and passengers) deaths, and it has a life-taking impact on non-
occupants (pedestrians, cyclists, and motorcyclists) and passengers.4 Given the mixed evidence, the 
expected relationship between highway fatality rates and seat belt use is uncertain a priori.

Driving knowledge is represented by performance on the GMAC Insurance National Drivers 
Test described in the next section. Two state-level performance measures are utilized in this analysis: 
test average (TESTAVG) and test rank (TESTRANK). Assuming that individuals with greater 
knowledge drive more safely, motor vehicle death measures are expected to be negatively related to 
TESTAVG and positively related to TESTRANK.5 

In addition to the four categories of explanatory factors discussed above, this study controls for 
spatial and temporal considerations. The former pertains to geographic areas of the U.S., while the 
latter corresponds to a time trend.

DATA

An online survey to test the knowledge of general driving safety rules among a nationally 
representative sample of licensed drivers in the U.S. is used in this study. In partnership with TNS 
(the world’s largest custom research agency), General Motors Acceptance Corporation (GMAC) 
conducted the survey from 2005 to 2011 to determine how many American drivers would meet 
one of today’s basic requirements to obtain a driver’s license.6 The GMAC Insurance National 
Drivers Test has become the gold standard for America’s driving IQ.  To test the knowledge of 
general driving safety rules, participants were administered a 20-question general driving test.  The 
questions were taken from actual written Department of Motor Vehicles (DMV) tests. A balanced 
sample from the TNS panel, representative of U.S. individuals aged 16-65, was used for the GMAC 
study. In 2010, a total of 5,130 surveys were completed, with a minimum of 100 surveys per state 
and Washington, D.C. National data were weighted to percentage of state, age, gender, and ethnicity. 
National weights were applied when analyzing data on a national level to account for share of voice 
(i.e., California had a higher percentage in weight value due to the size of its population, while North 
Dakota was lower). This was only applied when analyzing data on a total level. The study measured 
at the 95% confidence level. [GMAC Insurance (2011)]

The analysis in this study utilizes annual U.S. state-level data for the years 2005 through 2010. 
The dependent variable DEATHRT is measured by highway deaths per billion vehicle-miles. The 
source for the death and vehicle-miles figures is the Federal Highway Administration [FHWA] 
(various years).

The independent variable INCOME (real per capita disposable income, in dollars) is based on 
total nominal disposable income values from the Bureau of Economic Analysis (2011), population 
figures from the U.S. Census Bureau (2011 and 2014), and values of the Consumer Price Index for 
all urban consumers (base period: 1982-84) [Bureau of Labor Statistics (2014)]. FHWA (various 
years) is the data source for the explanatory variable RURURB (rural vehicle-miles divided by 
urban vehicle-miles). Information for the weather variables TEMP (annual mean temperature, in 
degrees Fahrenheit) and PRECIP (annual precipitation, in inches) comes from the National Climate 
Data Center (2011).

FHWA (various years) is the data source for the driver characteristics YOUNG (percentage 
of licensed drivers aged 24 years or younger) and OLD (percentage of licensed drivers aged 65 
years or older). Values for ALCOHOL (per capita apparent alcohol consumption, in gallons) for 
2005-09 come from the National Institute on Alcohol Abuse and Alcoholism [NIAAA] (2011) and 
for 2010 come from NIAAA (2014).7 The sources for information on SBELTUSE (seat belt use 
rate) for 2005-09 and 2010 are NHTSA (2010) and NHTSA (2011), respectively. Figures for the 
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driving knowledge variables—TESTAVG and TESTRANK—are as reported by GMAC Insurance 
(2011).  TESTAVG is the average percentage score on the GMAC Insurance National Drivers Test 
for test takers from a particular state. TESTRANK is the numerical position of a particular state’s 
TESTAVG value in a descending-order ranking of all state TESTAVG values.

To account for spatial considerations, dummy variables are included for the nine Census 
Divisions: New England (NEWENGL), Middle Atlantic (MDATLAN), East North Central 
(ENOCNTRL), West North Central (WNOCNTRL), South Atlantic (SOATLAN), East South 
Central (ESOCNTRL), West South Central (WSOCNTRL), Mountain (MOUNTAIN), and Pacific 
(PACIFIC). The U.S. Census Bureau (2010) is the source for this information. A linear trend variable 
(TREND) controls for temporal effects. Table 1 provides summary statistics on the variables used 
in the model estimations.

Table 1: Summary Statistics of Variables

Variable Mean Standard 
Deviation

DEATHRT 13.477 3.907
INCOME 16,118.77 2,105.018
RURURB 0.959 0.789
TEMP 52.864 7.535
PRECIP 37.750 15.102
YOUNG 13.505 1.957
OLD 15.751 1.834
ALCOHOL 2.375 0.470
SBELTUSE 83.150 8.059
TESTAVG 79.592 3.928
TESTRANK 25.196 14.328
NEWENGL 0.122 0.328
MDATLAN 0.063 0.243
ENOCNTRL 0.105 0.307
WNOCNTRL 0.147 0.355
SOATLAN 0.168 0.374
ESOCNTRL 0.084 0.278
WSOCNTRL 0.084 0.278
MOUNTAIN 0.164 0.371
PACIFIC 0.063 0.243
TREND 3.517 1.704

ESTIMATION RESULTS

Table 2 contains the regression estimation results for four different models.  In each model the 
dependent variable is DEATHRT. Models 1 and 2 have linear functional forms, and Models 3 and 
4 have log-log specifications.8 Except for the measures for driving knowledge, the independent 
variables are the same in all models.  In Models 1 and 3, driving knowledge is measured by the 
state’s test average (TESTAVG), while in Models 2 and 4 it is approximated by the state’s ranking 
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Table 2: U.S. State-Level Regression Estimates of Motor Vehicle Deaths per Vehicle-Mile,   
 2005–2010
Independent 
Variable

Expected 
Sign

Dependent Variable: DEATHRT
Model 1 Model 2 Model 3 Model 4

Intercept ? 6.463 0.836 3.867bb 2.035
(1.388) (0.260) (2.443) (1.607)

INCOME ? -3.56E-04bb -3.60E-04bb -0.331bb -0.332bb

(-5.361) (-5.482) (-3.638) (-3.652)
RURURB + 1.840aa 1.901aa 0.141aa 0.139aa

(9.721) (10.046) (9.710) (9.734)
TEMP + 0.188aa 0.173aa 0.852aa 0.825aa

(7.747) (6.906) (8.941) (8.467)
PRECIP - -0.001 -1.65E-04 -0.061aa -0.059aa

(-0.108) (-0.013) (-1.974) (-1.906)
YOUNG ? -0.005 0.009 0.118 0.129b

(-0.067) (0.138) (1.634) (1.772)
OLD ? 0.501bb 0.507bb 0.616bb 0.623bb

(7.088) (7.243) (8.240) (8.302)
ALCOHOL + 1.247aa 1.267aa 0.226aa 0.228aa

(5.004) (5.131) (4.887) (4.931)
SBELTUSE ? -0.077bb -0.074bb -0.352bb -0.361bb

(-4.871) (-4.690) (-3.911) (-4.021)
TESTAVG - -0.057a -0.420aa

(-1.409) (-1.808)
TESTRANK + 0.029aa 0.021aa

(2.707) (1.890)
MDATLAN ? 3.644bb 3.573bb 0.225bb 0.235bb

(6.960) (6.904) (6.200) (6.583)
ENOCNTRL ? 2.724bb 3.027bb 0.104bb 0.106bb

(5.199) (5.665) (3.021) (3.057)
WNOCNTRL ? 3.306bb 3.754bb 0.134bb 0.142bb

(5.968) (6.469) (3.442) (3.542)
SOATLAN ? 4.460bb 4.692bb 0.248bb 0.252bb

(8.958) (9.337) (6.894) (6.957)
ESOCNTRL ? 5.490bb 5.742bb 0.288bb 0.291bb

(9.381) (9.739) (6.655) (6.711)
WSOCNTRL ? 5.270bb 5.620bb 0.262bb 0.266bb

(8.305 (8.701) (5.667) (5.729)
MOUNTAIN ? 6.459bb 6.814bb 0.355bb 0.361bb

(9.510) (9.907) (6.765) (6.792)
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(Table 2: continued)

Notes: t statistics are in parentheses. In Models 3 and 4, all variables except the Census Division dummies and 
TREND are in natural logarithms. The control category for the Census Divisions is New England (NEWENGL).

 a significant at .10 level (one-tail test)       
aa significant at .05 level (one-tail test)      
 b significant at .10 level (two-tail test)       
bb significant at .05 level (two-tail test)

across all states (TESTRANK). Based on the R2 statistics reported in Table 2, all four models explain 
more than 80% of the variation in the motor vehicle death rate.

INCOME is statistically significant and negatively related to DEATHRT in all four models.9 
These results suggest that better economic conditions increase the demand for safety, and fewer 
fatalities result.  This corroborates findings based on pooled cross-section, time-series data as 
summarized in Loeb, Talley, and Zlatoper (1994, pp. 18-19).

Where a person drives influences DEATHRT.  In all four models, there is statistically significant 
evidence that as the ratio of rural to urban driving increases, so does the fatality rate. Rural driving 
conditions may involve less congested roads (higher speeds) as well as different types of road 
conditions. Also, rural settings may offer fewer nearby medical options in the event of an accident 
and consequently increase the chance of a fatality.

Higher temperatures, and presumably better driving conditions, are positively related to 
highway fatalities. More precipitation, however, reduces the death rate. Both weather variables may 
influence the driver’s level of attention as well as vehicle speed. The signs for both weather variables 
are as anticipated, with TEMP significant across all four models and PRECIP statistically related in 
the log-log models.

The age of the driving population is related to the death rate. A younger driving population 
generally increases the fatality rate. YOUNG’s coefficient is positive in all but Model 1 and is 
statistically significant in Model 4. There is stronger evidence that older drivers contribute to a 
higher death rate. The coefficient of OLD is positive and statistically significant in all four models.

Alcohol-impaired motorists create hazardous driving conditions and contribute to motor vehicle 
fatalities. All four models reveal a statistically significant relationship between alcohol consumption 
and the death rate.  Following conventional wisdom, the estimated coefficients are positive. This 
aligns with the findings of a large body of previous research on the impact of alcohol on highway 
safety.

In this analysis seat belt use is found to have a live-saving effect. Across all four models, 
the coefficient of SBELTUSE is negative and statistically significant. This corroborates previous 
research findings by NHTSA.

Regardless of the measure used, results suggest that greater knowledge of general highway 
safety rules enhances highway safety. As expected, the average test score (TESTAVG) coefficients 
are negative in Models 1 and 3; and the test rank (TESTRANK) coefficients are positive in Models 
2 and 4. All of these results are statistically significant.

Independent 
Variable

Expected 
Sign

Dependent Variable: DEATHRT
Model 1 Model 2 Model 3 Model 4

PACIFIC ? 4.662bb 5.126bb 0.240bb 0.256bb

(6.951) (7.4190) (5.291) (5.310)
TREND ? -0.777bb -0.704bb -0.059bb -0.052bb

(-9.072) (-11.540) (-9.761) (-12.108)
N 286 286 286 286
R2 0.843 0.846 0.862 0.862
Adjusted R2 0.833 0.836 0.853 0.853
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The control category for the Census Division dummy variables is New England (NEWENGL), 
so the results for these geographic variables are evaluated in comparison to this omitted division. In 
all four models, the coefficients for all of the Census Division dummies are positive and statistically 
significant. This suggests that in the geographic areas included in the estimated models there are 
factors leading to higher fatality rates than in New England.

The coefficient of TREND is negative and statistically significant in all four models. This 
implies that there are influences not explicitly controlled for in the estimations that contributed to a 
decline in the highway death rate over the period analyzed. For example, the trend variable may be 
capturing improved safety technology built into the driving fleet over time.

SUMMARY AND IMPLICATIONS

This paper is an effort to better understand the factors that influence motor vehicle deaths across 
U.S. states and over time. One contribution is the addition of driving knowledge, as measured by 
a written driver’s test, to a set of factors consistent with contributory factors to explain deaths 
per vehicle-mile. Four models, estimated using annual U.S. state-level data over six years (2005 
through 2010), provide results generally consistent with previous findings. The estimations use two 
functional forms:  linear and log-log.

Estimation results pertaining to the influences of several explanatory factors are robust across 
the models that include them. Negatively related to the fatality rate and statistically significant 
are: real per capita income, precipitation, seat belt use, and a linear trend. The models also reveal 
statistically significant positive associations with the highway death rate for the ratio of rural to 
urban driving, temperature, the percentage of young drivers, the percentage of old drivers, and 
alcohol consumption. Census Division dummy variables add statistically significant explanatory 
power and reveal death rate differences across geographic regions.

While common perception suggests more knowledge leads to better road safety, earlier empirical 
support—using a written driver’s test as a knowledge measure—was equivocal. This analysis uses 
two alternative measures of driving knowledge: individual state average and the ranking on the 
GMAC Insurance National Drivers Test. Data examining all 50 states strongly support the safety 
effects—as measured by lower death rates—of the written driving test. Regardless of the measure 
used, driving knowledge exhibits a statistically significant life-saving effect.

A number of implications follow this result. Lack of critical safety comprehension increases the 
risk of accidents or near accidents. Lowering this risk is likely to reduce both accidents and costs of 
insurance premiums. Further, increased overall safety is a public good. Finally, greater emphasis on 
the written test naturally complements the recent emphasis on the GDL programs to produce a better 
population of novice drivers.
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Endnotes

1. Driving knowledge as referred to in this paper focuses on the understanding of driving rules as 
typically measured by a written driving test.

2. Previous research found that altitude and alcohol consumption have an interactive effect on 
highway safety.  See Loeb, Talley, and Zlatoper (1994, p. 35).

3.   According to Peltzman (1975, p. 681), a driver faces a tradeoff between safety and “driving 
intensity.”  A reduction in the former (i.e., a higher probability of death from accident) results 
from an increase in the latter (e.g., greater speed, thrills, etc.).

4. Seat belt use may lead to riskier driving.  This may result in harmful consequences for non-
occupants.

5. The values for TESTRANK are 1 for the highest ranking state, 2 for the second highest, and so 
on.  Thus, a higher rank corresponds to a lower value on this variable.

6. GMAC Insurance survey data for 2011 are not included in the data set of this study because data 
for other variables was unavailable.

7.  Data on alcoholic intoxication while driving are unavailable. Therefore, information on this 
activity for the population in general is utilized in this analysis. The assumption is made here 
that the behavior of drivers with regard to this activity is highly correlated with that in the 
general population.

8. In Models 3 and 4, all variables except the Census Division dummies and TREND are in natural 
logarithms.

9.  In this paper “statistically significant” refers to significance at a level of .10 or less.
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by Siew Hoon Lim and Peter A. Turner

Large	and	unpredictable	swings	in	fuel	prices	create	financial	uncertainty	to	airlines.	While	there	
are the risks for going unhedged, airlines that hedge to mitigate fuel price risk face the basis risk. 
This	paper	examines	whether	the	length	of	hedge	horizon	and	distance	to	contract	maturity	affect	
the	effectiveness	of	jet	fuel	cross	hedging.	Understanding	the	effects	of	hedge	duration	and	futures	
contract	maturity	helps	improve	airline’s	fuel	hedging	strategies.	We	find	that	(1)	regardless	of	the	
distance	to	contract	maturity,	weekly	hedge	horizon	has	the	highest	effectiveness	for	jet	fuel	proxies	
like heating oil, Brent, WTI, and gasoil; (2) heating oil is the best jet fuel proxy for all hedge hori-
zons	and	contract	maturities;	and	(3)	the	hedge	effectiveness	of	heating	oil	is	higher	for	one-month	
and three-month contracts. 

INTRODUCTION

Fuel cost accounts for about one-third of the total operating cost of major passenger airlines in the 
U.S. (Lim and Hong 2014). Large and unpredictable swings in fuel prices create uncertainty to 
airlines’ financial performance. Like other nonfinancial firms, airlines use financial instruments and 
contracts to mitigate the impact of fuel price volatility and commodity price risks. 

If an airline expects jet fuel price to rise, part of the cost may be shifted toward airfare. But in-
creasing airfare may not be possible given the current market structure in the U.S. passenger airline 
industry. Airlines instead are able to use financial contracts that have petroleum products as underly-
ing assets, even though airlines do not actually consume any of the underlying assets. Airlines can 
set up hedges when the underlying asset is highly correlated with jet fuel. However, these cross 
hedges carry extra risk with them, and the correlation may not be strong during the duration of the 
futures contract. Along with the basis risk1 that a futures contract carries, the change in the correla-
tion between the two assets could cost an airline greatly (Turner and Lim 2015).

In addition to forward contracts2, airlines’ fuel hedging programs also rely on futures contracts 
traded on the New York Mercantile Exchange (NYMEX) or the Intercontinental Exchange (ICE). 
The futures contracts commonly used by airlines include U.S. West Texas Intermediate crude oil 
(WTI), heating oil, traded on the NYMEX, as well as Brent crude oil (Brent) in Europe and gasoil 
traded on the ICE.  Forward contracts are often utilized in the absence of an established exchange 
for jet kerosene. Derivatives like swaps, options, and collars (which are combinations of swaps and 
options) are also used.3

Southwest Airlines (Southwest) is regarded as a relatively experienced hedger in the industry.  
The company uses financial instruments or hedging contracts to decrease “its exposure to jet fuel 
price volatility” (Southwest 2012, page 99). However, despite its impressive net gains of $1.3 bil-
lion from fuel derivative contracts’ settlements in 2008 (while other airlines experienced losses), 
Southwest recognized net losses of $64 million and $157 million in fuel hedging in 2011 and 2012, 
respectively (Southwest 2013).  The airline reckoned that “ineffectiveness is inherent in hedging jet 
fuel with derivative positions based in other crude oil related commodities, especially given the past 
volatility in the prices of refined products” (Southwest 2015, page 25).

Irish budget airline Ryanair reported a 30% increase in fuel cost in the 2012 fiscal year despite, 
and because of, its fuel hedging programs covering as high as 90% of its quarterly fuel requirements. 
Jet fuel accounted for 45% of Ryanair’s operating costs in 2013, up from 43% in 2012 and 39% in 

Airline Fuel Hedging: Do Hedge Horizon and 
Contract Maturity Matter?
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2011.4 The company’s low fares and no-fuel-surcharges policy further limit its ability to pass on the 
fuel costs to passengers.  One of its U.S. counterparts, Allegiant, does not hedge. Other U.S. airlines 
have tried hedging but ceased later on, like US Airways that ceased hedging after 2008.  American 
Airlines, following its merger with US Airways, will terminate its fuel hedging program and allow 
all outstanding contracts to run off.

Corley (2013) of Mercatus Energy Advisors wrote, “The vast majority of fuel hedging mistakes 
are the result of a poor or non-existent hedging policy, or a failure to abide by the policy. Most 
hedging mistakes can be avoided if the company takes the time and effort to create a proper hedging 
policy.” On the other hand, an airline that chooses not to hedge faces the risk of jet fuel price 
swings. Due to shifts in demand and production the price of the jet fuel differential can easily change 
considerably in a year (Halls 2005). This added risk of the jet fuel differential means that airlines 
have to hedge with an asset that is highly correlated with jet fuel. 

Recent studies on this issue have focused on identifying a suitable commodity for jet fuel 
cross hedging (Adams and Gerner 2012), the effect of fuel hedging on annual operating costs and 
efficiency (Lim and Hong 2014), and a study by Rampini et al. (2014) who find that U.S. airlines with 
increasing financial constraints or have low net worth are likely to hedge less due to the decreased 
financial ability to hedge. Thus, if an airline chooses to hedge its fuel costs, it must be financially 
capable and willing to bear risks.  Still there is no guarantee that hedging will generate desirable 
outcomes for airlines, and hedging may also expose firms to considerable basis risk resulting from 
factors beyond the firm’s control.

Moreover, despite being the major consumers of jet fuel, the ability of airlines to influence 
oil prices is very limited, if not null (Morrell and Swan 2006). Making hedging even harder, much 
of the variance in oil pricing is sudden and sharp changes, making interpretation of the changes 
difficult (Gronwald 2012). Samuelson (1965) suggests that futures prices become more volatile 
as the time to expiration nears, but the proposition does not always hold (Brooks 2012).  Besides 
the effect of maturity, the effectiveness of a hedge also hinges on the hedge horizon or the holding 
period (Chen et al. 2003).

Thus, understanding the effects of hedge duration and futures contract maturity helps improve 
airline strategies for cross hedging jet fuel. In this paper, we examine whether the length of hedging 
period and the distance to contract maturity affect the effectiveness of jet fuel cross hedging. A 
number of studies have attempted to address the effects of hedging horizon and contract maturity, 
few tried to address both simultaneously, but none tried to address both for jet fuel cross hedging. 
This study seeks to answer the question “Do futures contracts’ holding period (or the hedge horizon) 
and the time to maturity influence the effectiveness of airlines’ jet fuel cross hedging?” To answer 
this question, we examine the hedging performance of four common jet fuel proxies (WTI, Brent, 
heating oil and gasoil) with different futures contract maturities and holding periods. The results 
will enable airlines to identify a suitable cross hedge proxy and an optimal hedging strategy that 
minimizes jet fuel hedging risk and maximizes hedge effectiveness, which in turn stabilizes costs 
and reduces earning volatility. 

LITERATURE REVIEW

Fuel Price Risk and the Airline Industry

Commodity price risk deals with the uncertainty in the future price of a good in the market. 
The commodity markets tend to be more sensitive to price changes, leading both financial and 
nonfinancial firms to enter into derivative contracts. Commodity price risk is the largest risk for 
airlines. Even with the increased efficiency of airplanes, jet fuel can still be over 30% of an airline’s 
operating cost. There is much literature that exists on this subject and the majority is connected with 
how hedging affects airlines. The reason for this debate is that while there are the risks for changes 
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in the price, airlines that use fuel hedging to control commodity price risk do not always have lower 
operating expenses (Lim and Hong 2014). 

After the success of Southwest Airlines’ fuel hedge in the early 2000s, many other passenger 
airlines have started to hedge their fuel costs. However, Halls (2005) states that a fuel hedge is not 
as straightforward as it may seem. One such problem is that for fuel hedging, the actual asset is 
not associated with a widely traded derivative. This means there will have to be some cross price 
hedging, where the firm hedges a different commodity to the one it actually uses, but figures that 
the price will correlate to the commodity it uses.  For fuel there are many options from Brent, WTI, 
heating oil, and gasoil.5 These products are closely related to jet fuel, but that does not mean all 
of them are ideal for cross hedging. As Halls (2005) mentions anecdotally, while some firms used 
heating oil, there could be great losses in those hedges because at times heating oil and jet fuel did 
not track each other at all. But even with that, on a simple regression he found that over a period of 
two years heating oil was around 90% correlated and crude was about 80%.

Nevertheless, even with this information, there are still unknown variables that could cause 
the correlation to change, like a change in the cost of the jet fuel differential. The differential is a 
premium for further refining of the fuel that is needed; however, it can change by large amounts for 
seemingly unknown reasons. If WTI crude is used to hedge jet fuel exposure, it most likely will not 
follow jet fuel exactly. This difference in relationship is part of hedge effectiveness, but it also is 
considered to be part of the basis risk.  

The Effects of Duration and Maturity on Hedging Performance

Airlines may hedge for various reasons. In practice, however, hedging may also expose firms to 
considerable basis risk resulting from factors beyond a firm’s control during the course of a hedge.  
The relationship of hedge effectiveness with hedge duration (or holding period) and contract maturity 
has been extensively examined by Ederington (1979), Malliaris and Urrutia (1991), Lindahl (1992), 
Holmes (1996), Chen et al. (2003), Ripple and Moosa (2007), and Adams and Gerner (2012), among 
others.

Ederington (1979) finds that longer durations are associated with better hedging performance 
for futures contracts for T-Bill and GNMA 8% pass-through certificates. Lindahl (1992) finds that 
hedge ratios6 increase with hedge duration for stock futures. Holmes (1996) explains that due to 
arbitrageurs’ activities, differences between spot and futures would not be large; this means that 
fractions of the total risk decreases as the duration of hedge increases. He finds the effectiveness of 
the FTSE-100 stock index futures for stock portfolios is higher for longer duration hedges. Malliaris 
and Urrutia (1991) find that for foreign currency hedging, relative to a one-week hedge duration, 
a one-month holding period is associated with a higher R2 in the OLS regression, but the portfolio 
return would be higher with a one-week holding period.

Looking into futures contracts for 25 different commodities, Chen et al. (2003) examine the 
relationship between the hedge ratio and the hedge duration. They find that most of the hedge ratios 
are below one and increase with the hedge duration, and that hedge effectiveness rises with increased 
hedge duration.

For WTI futures, Ripple and Moosa (2007) find that the hedge ratio, derived from the slope 
coefficient in a simple regression, is lower for futures contracts closer to maturity; additionally, they 
also find that WTI futures contracts with a near-month maturity are more effective than those with 
a six-month maturity. This observation is consistent with Samuelson’s hypothesis (1965) which 
argues that futures prices are less volatile than spot prices and the futures price volatility decreases 
when the time to maturity increases. Ripple and Moosa (2007) also observe that the hedge ratios are 
greater than one in some cases; the reason for this is that the hedge ratio is expected to be less than 
one for near-maturity contracts, and if the futures price is as volatile or more than the spot price, then 
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the hedge ratio should not be greater than one (Cecchetti et al. 1988). But if the futures price is less 
volatile than the spot price, it is possible for the hedge ratio to exceed one.

However, Ripple and Moosa (2007) did not attempt to assess the suitability of petroleum proxies 
for jet fuel. Adams and Gerner (2012) use forward contracts with different maturities used for jet fuel 
cross hedging to determine the value at risk as well as the hedge effectiveness, which is measured 
by the model’s log-likelihood value and the coefficient of the error correction term. They find that 
optimal cross hedging instruments are dependent upon the maturity of the instrument’s forward 
contract, and that optimality decreases with increased time to contract maturity. The optimality of a 
hedge is defined by a hedging strategy that yields the minimum variance hedge ratio, hence the least 
variability in returns. Their results show that a gasoil forward with maturities of three months or less 
is the best cross hedge instrument for jet fuel; but WTI and Brent forwards with maturities longer 
than three months are more superior than gasoil for jet fuel cross hedge. Since Adams and Gerner 
(2012) used forward contracts, the study did not examine the effect of the holding period on hedge 
effectiveness. A recent study by Turner and Lim (2015) examined the effectiveness of WTI, Brent, 
gasoil, and heating oil for jet fuel using daily data, but the study assumed a one-day holding period 
and did not examine the effect of hedge horizon on hedge effectiveness. Neither of the studies by 
Adams and Gerner (2012) and Turner and Lim (2015) examined the relationship between the hedge 
horizon and the hedge effectiveness of jet fuel cross hedging.

Hedge effectiveness is paramount. If a firm’s hedges do not meet the requirement for hedge 
effectiveness, then hedge accounting rules do not apply, and the gains and losses from the firm’s 
derivatives must be recognized in the quarterly financial statement, and thereby exacerbating 
earning volatility (Zhang 2009). In the United States, the hedge accounting standard (the Statement 
of Financial Accounting Standards No. 133, or SFAS 133) was initiated by the U.S. Financial 
Accounting Standards Board (FASB) in 1998.

A hedge is considered highly effective if the changes in fair value or cash flow of the hedged 
item and the derivative instrument offset each other. While the SFAS 133 does not make any 
numeric definition, the rule-of-thumb is a correlation coefficient of 0.90 or an adjusted R2 of 0.80 
or higher, in which case the hedge is deemed highly effective. The ex ante effectiveness of a hedge 
must be evident before implementing the hedge, and the hedge must continue to be evaluated for 
effectiveness on an ex post basis throughout the life of the hedge (Finnerty and Grant 2002; CME 
Group 2012).

Airlines commonly use the regression method to determine if a hedge is effective. Nevertheless, 
owing to high oil price volatility, hedge ineffectiveness is rather common for the airline industry. For 
example, Southwest lost hedge accounting for all its unleaded gasoline derivative instruments and 
certain types of commodities used in hedging (Southwest Airlines 2012).   

ECONOMETRIC MODELS

Johnson (1960) shows that the optimal hedge ratio for a portfolio may be derived from minimizing 
the variance of the portfolio returns. The underlying assumption of the minimum variance principle 
is that hedgers are risk averse and are therefore involved in hedging to reduce risk. Airlines must 
choose a fraction of jet fuel spot positions that needs to be offset by opposition positions on futures 
markets.  

Now let St and Ft be respectively the logarithms of the spot and futures prices; let ∆St be the 
log difference of spot prices, ∆St = St − St−1, and ∆Ft be the log difference of futures prices, ∆Ft = 
Ft − Ft−1. We consider the returns of a portfolio to an airline with a long cash position and a short 
futures position:7

(1)  Rt = ∆St − β∆Ft , 
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where β is the hedge ratio, which is the quantity of a futures asset bought relative to the quantity of 
a spot asset, like jet fuel. The firm takes out opposite positions in the spot and futures markets to 
enable itself to offset losses incurred in one market with gains from the other market.

Since hedgers are concerned with the portfolio returns from the beginning to the end of the 
holding period, according to Chen et al. (2003), the differencing interval in equation (1) should be 
the hedge duration or the holding period of the futures contract. This implies that the differencing 
interval should be one week for a one-week holding period, and weekly data should be used. In other 
words, since the differencing interval is based on the data frequency, the data frequency is the hedge 
duration. Thus, the value of a portfolio with a k-period hedge duration involves k-period differenc-
ing, and equation (1) may be rewritten as: 

(2) Rt = ∆kSt − β∆kFt ,

Where ∆kSt = St − St−k and ∆kFt = Ft − Ft−k.  If k = 1, then equations (1) and (2) are identical.
In the simplest case, the minimum variance hedge ratio is assumed to be constant and can be 

obtained by means of a simple linear regression model (Ederington 1979) estimated by the ordinary 
least squares approach. For a given one-period hedge duration, the cross hedge model is specified as:

(3) ∆St = α +  β∆kFt  + ε t 

Where β is the minimum variance hedge ratio which measures the effectiveness of the cross hedge. 
The OLS estimator β	produces the smallest variance in the returns of a portfolio. Equation (3) is 
appealing given its simplicity, but a number of issues arise with it. 

The first is that the hedge ratio derived by (3) is time-invariant regardless of changes in price 
information in the spot and futures markets. Hedgers take opposite positions in futures and spot 
markets so that any losses incurred in one market could be at least partially offset by gains in the 
other market.  For example, if an airline’s exposure was one million gallons of jet fuel, it could 
choose to cross hedge this exposure with NYMEX heating oil futures contracts. The trading unit for 
heating oil futures at NYMEX is 1,000 barrels (or 42,000 gallons).  The minimum variance hedge 
ratio in equation (3) is a constant value. If the ratio is 0.8, then the number of heating oil futures 
contracts that the airline should hold is  or 19, which is 19,000 barrels of heating 
oil.

Although the hedge ratio in equation (3) yields a constant, minimum variance in the value of 
the hedged position, Cecchetti et al. (1988) argue and Myers (1991) and Baillie and Myers (1991) 
show that the optimal hedge ratios for a portfolio may be time-varying as new information becomes 
available and market participants adjust their positions. To address this issue, past studies have 
applied multivariate generalized autoregressive conditionally heteroskedastic (GARCH) models to 
describe the spot-futures relationship as well as their distributions. A multivariate GARCH model 
allows time-varying optimal hedge ratios to be estimated from the covariance matrix.

A second problem with respect to equation (3) is that the model specification disregards the 
possible long-term equilibrium relationship between the spot prices of jet fuel and the futures prices 
of another petroleum commodity (Adams and Gerner 2012). If so, they are known to be cointegrated, 
and a certain linear combination of these series is stationary. If a pair of data series are cointegrated, 
the first differences of the two series can be modeled using a vector autogression model with an error 
correction term. The resulting model is a vector error correction model (VECM).

To address these two issues, we apply multivariate GARCH models with error correction terms. 
By allowing the whole covariance matrix to vary through time, multivariate GARCH models may 
be used to estimate the conditional volatilities of a set of time series variables while permitting the 
contemporaneous shocks to variables to be correlated with each other since shocks that affect one 
variable could also affect the other variables. The analysis in this paper uses bivariate GARCH 
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models of the joint distribution of the jet fuel spot price and the futures price for each of the four oil 
commodities.

The time-varying (or dynamic) optimal hedge ratio can be obtained by the ratio of the conditional 
covariance between St and Ft to the conditional variance of Ft (Kroner and Sultan 1993):

(4) 

The optimal hedge ratio in (4) depends on the covariance of St and Ft and the variance of Ft  at 
time t. If both the covariance and variance terms are constant, the hedge ratio may be derived using 
OLS. To account for new information, we specify a model in which the spot and futures prices 
are specified in a Bollerslev’s (1990) constant conditional correlation (CCC) model and with error 
correction:

(5) 

 

 

      

(6) 

 

 
where (St–1 – γ0 – γ1Ft–1) in (5) is the error correction term, Ψt–1 is the information at time t–1; the 
residuals, εt,  follow a bivariate t distribution with zero mean and a conditional covariance matrix, 
Ht . In (6), hSF,t is restricted to be a constant, and the correlation, ρ is not a function of time. The 
assumption of a constant correlation may be restrictive.  Hence, we consider two additional model 
specifications below.

An alternative to the CCC GARCH is the BEKK specification, which converts the covariance 
matrix to be a vector of variances and covariances.  We consider the diagonal BEKK specification8 
by Engle and Kroner (1995). For a bivariate GARCH(1,1), the diagonal BEKK is given by

(7)  

and plainly,

(8) 

 

 
In (8), each of the conditional variances, hSS,t and  hFF,t , depends on its lagged term and the square 
of the lagged error terms.  Thus, a shock at time t will affect εt and will affect hSS , hFF  and hSF in the 
next period. 
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The diagonal BEKK is an alternative form of the diagonal VECH GARCH and has advantage 
of the VECH, because the BEKK specification guarantees the covariance matrix to be positive semi-
definite (Bauwens et al. 2006), and as long as  the BEKK is guaranteed to be  
stationary (Ledoit et al. 2003). 

Based on equation (4), the dynamic hedge ratios may be derived from the bivariate CCC and 
BEKK GARCH models, and they are given by

(9) 

where  is the estimated conditional covariance, and  is the estimated conditional variance.
The hedge ratio in (9) targets returns volatility minimization, so it yields the smallest variance 

of portfolio returns, .  Following Ederington (1979), we compare the variance of a hedging 
portfolio to an unhedged portfolio to evaluate the effectiveness of a cross hedge. Specifically, hedge 
effectiveness is measured by:

(10)  

where  is the smallest variance of the returns to a hedged portfolio, 
and Var(ΔSt) is the variance of the returns to an unhedged portfolio. The ratio of the two variances 
shows the relative volatility in returns; subtracting the ratio from one yields the percentage of 
volatility reduction derived from a hedged portfolio over an unhedged portfolio.

DATA

The time span of this analysis is from April 15, 1994, through February 27, 2014. The jet fuel spot is 
the U.S. Gulf Coast 54 jet fuel spot price. This spot market was chosen because it is the most active 
among the six jet fuel markets in the U.S. (Argus 2012). We consider four usual cross hedge proxies 
for jet fuel: WTI sweet crude, its European crude oil counterpart North Sea Brent (Brent), No. 2 
heating oil traded as New York Harbor ultra-low sulfur No. 2 diesel, and gasoil traded in Europe.  
WTI and No. 2 heating oil are traded on the New York Mercantile Exchange (NYMEX). Brent and 
gasoil are traded on the Intercontinental Exchange (ICE). The futures price data were obtained with 
3, 6, 9, and 12 month rolling contracts for each commodity. These strips of months were designed to 
provide a rolling price for contracts expiring 3, 6, 9, or 12 months in the future.9 

The spot and futures prices are daily data retrieved from the Bloomberg Professional Service.  
Since we would like to examine the hedge duration on hedging performance, and assuming that 
portfolio adjustments are made on daily, weekly and monthly bases, we must first construct the 
appropriate data series for our analysis.  The hedge durations considered in this study are one day, 
one week, and four weeks (1 month). Obviously, the daily data can be applied for one-day hedge 
duration, and the sample size is 4,985 observations.  For weekly hedge horizon, we construct the 
weekly price series using Wednesday-to-Wednesday’s closing prices, as in Myers (1991) and Park 
and Switzer (1995).  If there is no trading on Wednesday due to a public holiday, then the closing 
price on Tuesday is used. The resulting sample size is 1,032 weekly observations from April 18, 
1994, to February 24, 2014. Monthly price series are constructed with four-week data, and an 
overlapping window is used as in Malliaris and Urrutia (1991). The sample size for the monthly 
frequency data is 1,028.

We conduct the augmented Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test and the 
Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test to test for nonstationarity in the price data. 
We use Schwarz Information Criterion (SIC) to determine the appropriate number of lags. Based on 
the test results, the log level price series are nonstationary.  Table 1 displays the summary statistics 
for spot and futures prices as well as the results of the KPSS test for stationarity.10 The standard 
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deviations of jet fuel spot price differences are higher than those for the futures prices, suggesting 
more volatility in the spot market. The standard deviations of futures price differences get smaller as 
the time to maturity increases; this is in line with Samuelson’s (1965) proposition about the relative 
volatility of spot and futures prices, and futures prices approaching contract maturity tend to move 
closely with the spot prices.

We also conduct the Engle-Granger cointegration test on ut = St – γ0 – γ1Ft . Results from the 
ADF and PP tests on ut conclude that ut  is stationary, implying the presence of a long-run equilibrium 
relationship between the spot price and each of the commodity’s futures price series. Thus, the error 
correction term ut–1 = St–1 – γ0 – γ1Ft–1  is included as an additional regressor in the two conditional 
mean equations in the form of a vector error correction model (VECM) with GARCH errors.

EMPIRICAL RESULTS

For each hedge horizon or holding period, we estimate the spot and futures prices for each of the four 
commodities for each of the five maturities for the entire sample period. We present the conventional 
hedge ratios that we estimated from all the OLS regressions in Table 2. We observe some patterns in 
the results. Firstly, based on the constant hedge ratio derived from the OLS regression in equation 
(3), all adjusted R2’s fall below 80%, suggesting that none of the oil commodities used for cross 
hedging jet fuel satisfies the conventional threshold for high hedge effectiveness in the constant 
hedge ratio portfolio. 

Secondly, based on the adjusted R2’s, heating oil appears to be more suitable for cross hedging 
jet fuel for all maturities (one to 12 months) and for all hedge horizons (daily, weekly, and monthly).  
Thirdly, heating oil contracts maturing in one month have the highest effectiveness, but the 
effectiveness decreases with distance of maturity. For Brent and gasoil, the hedge effectiveness 
is higher with the three-month maturity. In most cases, the hedge ratios rise and exceed one with 
distance to maturity. That is, the longer the distance to maturity, the higher the hedge ratio. Overall, 
the characteristics of the hedge ratio and the distance to maturity are largely consistent with the 
findings by Ripple and Moosa (2007) who observe higher hedge ratios (or ratios greater than one in 
some cases) for longer maturity contracts.

Next, the weekly hedge horizon appears to be more effective for all commodities. As shown 
by the estimated values of β in Table 2, gasoil performs poorly as a jet fuel proxy for a one-day or a 
one-month horizon. For a one-week horizon, however, the effectiveness of gasoil contracts maturing 
in one or three months is the second most desirable after heating oil contracts.

The conventional hedge ratio estimated via OLS regression imposes the restriction that the 
hedge ratio is time-invariant and does not respond to new information or shocks. Based on the 
Lagrange multiplier test (not reported), the residuals in all the OLS models for all commodities 
exhibit the ARCH effects, implying the presence of time-varying variances. We apply the Engle-
Granger cointegration test for each commodity to test for the long-run equilibrium relationship 
between the energy commodity and jet fuel.  The test results confirm the existence of such a long-run 
relationship. Thus, the GARCH (1,1) specification with error correction is found to be an adequate 
representation of the volatilities in spot and futures prices for all data frequencies. Additionally, 
the distribution of the OLS residuals is found to be leptokurtic; to account for excess kurtosis,11 the 
residuals in the GARCH models are assumed to follow the Student’s t distribution. The GARCH 
results for the WTI futures contracts one month to maturity with a one-day hedge horizon is reported 
in Table 3. 
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Table 2: Conventional Hedge Ratios by Maturity and Hedge Horizon†

Hedge Horizons
Daily  Weekly  Monthly

WTI β Adj. R2  β Adj. R2  β Adj. R2

1-month 0.72703 0.47535 0.75443 0.48442 0.68538 0.41689
3-month 0.92276 0.54613 0.91542 0.53999 0.85126 0.49815
6-month 1.02271 0.53283 1.03257 0.52984 0.96340 0.50053
9-month 1.08394 0.51205 1.10312 0.51396 1.03199 0.49207
12-month 1.11992 0.49077 1.15118 0.49361 1.08433 0.47939
Brent         
1-month 0.80740 0.49367 0.84331 0.53306 0.78279 0.50263
3-month 0.94280 0.53060 0.96722 0.55576 0.90956 0.53130
6-month 1.03591 0.51662 1.06580 0.54193 1.00198 0.52401
9-month 1.07547 0.48784 1.13293 0.52532 1.06847 0.51744
12-month 1.09493 0.46188 1.16711 0.49927 1.10787 0.50269
Gasoil         
1-month 0.66587 0.29441 0.87914 0.55666 0.81348 0.47679
3-month 0.78936 0.33065 0.99184 0.56130 0.92121 0.48061
6-month 0.85694 0.30668 1.08686 0.52487 1.01019 0.45278
9-month 0.89733 0.28971 1.15139 0.48863 1.07500 0.43230
11-month 0.90562 0.27800 1.18905 0.47295 1.11453 0.42491
Heating Oil        
1-month 0.89632 0.66679 0.94618 0.71545 0.92670 0.71254
3-month 1.04084 0.66551 1.06112 0.68660 1.04445 0.67595
6-month 1.12381 0.61527 1.13844 0.61619 1.12181 0.61106
9-month 1.19221 0.58873 1.23237 0.58078 1.21322 0.58635
12-month 1.22159 0.56925 1.31062 0.57502 1.28094 0.59203

#obs 4984  1031  1028
† The cross hedge model is given in equation (3) and estimated by OLS.

In Table 3, all the coefficients are statistically significant, implying that a GARCH specification 
is appropriate. For each commodity and model, the t distribution degrees of freedom parameter 
is statistically significant, indicating that the standardized errors are not normally distributed. 
High persistence in volatility is observed in each model in Table 3, where  and ai + bi are 
close to 1 for the BEKK and the CCC models, respectively. Also, in the CCC models, the constant 
correlation, ρ, between jet fuel and heating oil is the highest at 0.924, and the correlation between jet 
fuel and gasoil is 0.595, which is the lowest of the four. 

The dynamic hedge ratios, , in equation (9) can be estimated from the second moments, 
which are given by equations (6) and (8). We then estimate the portfolio returns Rt in equation 
(2) using the value of  for each day.  Since  is the minimum variance hedge ratio, the variance 



39

JTRF Volume 55 No. 1, Spring 2016

of Rt is the smallest possible. The hedge effectiveness (HE) in equation (10) is used to evaluate the 
performance of each commodity with different lengths to maturity.  

For comparison purposes, we also consider a naïve hedge scenario under which airlines cross 
hedge 100% of their jet fuel, i.e., constant hedge ratio = 1. Additionally, the variance of Rt based 
on the constant hedge ratios from the OLS models is computed to assess volatility reduction in 
equation (10) as an alternative to the adjusted R2 measure of hedging performance. Table 4 displays 
the variances of portfolio returns for the one-day hedge horizon and the hedge effectiveness of each 
oil proxy with respect to the contract maturity. 

It is evident from the results in Table 4 that heating oil outperforms its counterparts as a cross 
hedge proxy for jet fuel for a one-day hedge horizon for all maturities up to 12 months as indicated 
by the higher HE, and a heating oil contract maturing in one month is most effective compared with 
contracts with a longer maturity.  Based on the estimated HE values in Table 4, for a one-day hedge 
horizon, a one-month heating oil futures is estimated to reduce returns volatility by about 64% to 
67% over an unhedged portfolio.  Also, WTI appears to be slightly more appealing than Brent, and 
gasoil is the least performing of the four for the daily hedge horizon. All models in Table 4 predict 
that hedge effectiveness decreases for contracts longer than three months in maturity for WTI, Brent, 
and gasoil. 

For weekly and monthly horizons, the hedging performance of each energy futures is examined 
by repeating the above process. We report the results in Tables 5 and 6. The results in the two tables 
show that heating oil remains the most effective regardless of the hedge horizon or the maturity, 
and heating oil contract maturing in one month is more desirable than those with further maturities.  

Contrary to its ineffectiveness for a one-day horizon, the hedging performance of gasoil 
improved considerably under a one-week holding period (see Table 5).  Generally, the results in 
Table 5 show that WTI, Brent, and gasoil contracts maturing in three months are more desirable 
than other maturities. 

On the other hand, the effects of maturity on hedge effectiveness are mixed for a one-month 
hedge horizon (Table 6). The performance of gasoil dissipates, but its effectiveness remains over 
40% depending on the model and the distance to maturity.  The performance of heating oil over a 
one-month holding period is nearly the same as its effectiveness over a one-week horizon. 

The lower HE values for WTI as shown in Tables 5 and 6 mean that the performance of WTI as 
a hedge proxy for jet fuel is less desirable compared with the other commodities over a one-week (in 
Table 5) or a monthly horizon (see Table 6).  Brent is as suitable as gasoil for weekly and monthly 
horizons, but while gasoil is a better proxy for contracts maturing in three months or less, and Brent 
contracts with three months or longer maturities are more appealing. 

In Tables 4-6, the OLS constant hedge strategy appears to dominate all models in producing 
the highest hedge effectiveness. This is expected since the OLS constant hedge ratio minimizes 
the unconditional variance, while the time-varying GARCH hedge ratios minimize the conditional 
variance, and the Ederington’s (1979) HE measure in equation (10) is based on the unconditional 
variance (Lien 2009).  
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Out-of-Sample Hedging Performance

The analysis so far provides a glimpse of the historical hedge effectiveness of each commodity 
futures. The results yield only ex ante information that is useful for firms in identifying a reasonably 
effective hedging instrument and potential hedging strategy. However, the hedging performances 
must be evaluated to determine whether the models hold in the future, given that what works best 
within the sample does not necessarily work well outside the sample.  If heating oil is used as a cross 
hedge proxy for jet fuel, it is important for airlines to continue to evaluate the hedging performance 
on an ongoing basis.

For this we apply the one-period-ahead out-of-sample forecasting approach on the models. 
Since heating oil dominates the other three commodities for cross hedging jet fuel, the out-of-
sample analysis on heating oil is conducted.  At first, we split the full sample into an estimation 
subsample and a forecasting sample. The estimation subsample contains the first 70% of the 
observations, and the forecasting sample contains the remainding 30%, which we use for out-of-
sample evaluation.  The former subsample is used to estimate the parameters in the GARCH models, 
and subsequently the estimated parameters are used to forecast Ht  and the dynamic hedge ratio for 
the next period.  Once the first forecasted values are obtained, the estimation subsample (70% of 
total observations) is rolled over to the next period to generate another one-period-ahead forecast.  
This process is repeated on a period-by-period basis from the first observation of the forecasting 
sample to the end of the sample.  The process is implemented for each maturity using different hedge 
horizons. Specifically, for each GARCH specification, the forecasting sample for the daily hedge 
horizon consists of 1,495 forecasted portfolios (March 26, 2008 - February 27, 2014), the weekly 
horizon has 310 (starting from March 24, 2008), and the monthly (4-weekly) hedge horizon has 156 
forecasts (starting from March 10, 2008). 

The forecasted portfolio returns obtained from the models are then used to calculate hedge 
effectiveness.  For comparison purposes, we also compute the variances and the hedge effectiveness 
of the naïve and the OLS constant hedge portfolios for the forecasting sample periods. The results 
are reported in Table 7. 

In Table 7, regardless of the hedge horizon, the hedge effectiveness of heating oil is higher for 
one- and three-month contracts; the hedging performance drops slightly for contracts with longer 
maturities. Additionally, the hedges over the weekly and monthly horizons are more effective. In a 
nutshell, the out-of-sample results indicate that heating oil is a reliable cross hedge proxy for jet fuel, 
especially for contracts maturing in three months or less.  
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CONCLUSIONS

Because of wild swings in oil commodity prices, airlines undertake considerable risk with jet 
fuel cross hedging. Ineffective hedges create substantial financial vulnerability and instability to 
airlines, which often incur considerable losses in their hedging programs. This paper examined the 
effectiveness of WTI, Brent, gasoil, and heating oil as cross hedge proxies for jet fuel.  The findings 
shed light on the effects of hedge duration and distance to maturity on hedge effectiveness. Our 
results show that heating oil is the most suitable proxy of the four oil commodities regardless of the 
contract maturity and hedge horizon.

We find heating oil, rather than gasoil, to be a more suitable cross hedge proxy for jet fuel. This 
result contradicts the finding in Adams and Gerner (2012), which showed gasoil to be more superior. 
One plausible explanation for this is that Adams and Gerner (2012) used jet fuel spot prices from 
Amsterdam-Rotterdam-Antwerp (ARA), which are likely more correlated with the future prices of 
gasoil that is also traded in Europe (Adams and Gerner 2012). On the other hand, this study uses 
U.S. Gulf Coast jet fuel as the spot market and considers No. 2 heating oil traded on the NYMEX as 
a cross hedge commodity, thus heating oil is more suitable for U.S. jet fuel cross hedge. This may 
indicate that besides the hedge horizon and distance to maturity, hedge effectiveness is also location-
sensitive. We find gasoil’s performance to be the most inferior for a one-day holding period, but it 
improved considerably over a weekly horizon. 

The out-of-sample results suggest that one- and three-month heating oil contracts are the most 
desirable over contracts with longer maturities. This result is consistent with an earlier finding by 
Turner and Lim (2015). However, since Turner and Lim (2015) only assumed a one-day hedge 
horizon, they did not examine the hedging performance over the weekly or monthly holding periods. 
In this study, we find that a one-week horizon is more favorable than daily and monthly holding 
periods. Overall, the one-day hedge horizon is not recommended for all commodities and maturities, 
and even though heating oil may be considered reasonably effective, the transaction costs associated 
with a daily horizon might be too high for the hedge to be considered economically sound. 

In summary, the effects of hedging horizon and maturity on the performance of jet fuel proxies 
are commodity-specific. Heating oil outperforms all three other proxies, especially with a weekly 
hedge horizon and for contracts maturing in three months or less.  Gasoil, WTI, and Brent all 
perform well with a weekly hedge horizon, but their performances declined with a monthly hedge 
horizon.  
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Endnotes

1. Basis risk is the risk to a hedger as a result of the difference in the futures price and the spot 
price of a commodity. 

2. A forward contract is a non-standardized contract between two parties that allow them to buy or 
sell an asset at a specific price at a specific time in the future. Unlike futures contracts that are 
exchange-traded, forward contracts are private agreements. 

3. See Morrell and Swan (2006) for detailed discussions on futures, forwards, options, collars, 
and swaps.

4. In 2009, Ryanair’s fuel cost per available seat mile rose by 39% and total fuel cost rose by a 
stunning 59% relative to the fuel costs in 2008 (Ryanair 2009). 

5. Gasoil is the same as No. 2 fuel oil in the U.S., but it is the European designation for the product 
and traded in Europe (Turner and Lim 2015).

6. A hedge ratio is the ratio of the size of a position in a financial contract, such as a futures 
contract, to the size of the underlying asset. 

7. A long position refers to a firm’s position to buy an asset in the future, and a short position 
refers to a firm’s position to sell an asset in the future. If a firm takes a long cash position and 
a short futures position, that means the firm sells futures contracts while buying jet fuel in the 
spot market. 

8. Baba, Engle, Kraft, and Kroner (BEKK 1990). The diagonal BEKK that restricts off-diagonal 
elements of the coefficient matrices to be zero, and is therefore more parsimonious than the 
general form BEKK.  

9. Because gasoil futures price data for 12-month rolling contracts were not retrievable from 
Bloomberg at the time of this research, we used the data for 11-month rolling contracts as a 
proxy.

10. Results from the ADF and PP tests are consistent with those produced by the KPSS test.  Hence, 
the PP and ADF test results are not reported here.

11. Kurtosis measures the thickness of the tails of a distribution. A distribution with thick tails are 
leptokurtic. In investment, a leptokurtic distribution means more risk as outlier events are more 
likely to occur. Since the distribution of the GARCH residuals is leptokurtic, we assume the 
distribution is Student’s t as opposed to normal.
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by T. Edward Yu, James A. Larson, Burton C. English, Joshua S. Fu, Jimmy Calcagno, III,  
and Bradly Wilson
 
This study minimizes total cost for single-feedstock supply chains of two dedicated energy crops, 
perennial switchgrass and biomass sorghum, in Tennessee using a spatial optimization model. 
Greenhouse gas emissions from the transport of feedstock to the conversion facility were estimated 
for	 respective	 feedstock	 supply	 chains.	 Results	 show	 that	 different	 demand	 for	 land	 types	 from	
two	feedstocks	and	the	geographically	diverse	landscape	across	the	state	affect	the	economics	of	
bioenergy crops supply chains and feedstock transportation emissions. Switchgrass is more suitable 
than biomass sorghum for biofuel production in Tennessee based on the supply chains cost and 
feedstock hauling emissions. 

INTRODUCTION

Biomass feedstock produced from dedicated energy crops and the residues of crop and forest have 
great potential for the production of bio-based fuels, power, and products in the United States 
(Turhollow et al. 2014). Various federal policy programs, such as blender tax credits, federal 
legislation of biofuel mandates, and the grant/loan program for establishing biomass feedstocks and 
constructing conversion facilities under the Food, Conservation, and Energy Act of 2008 (i.e., 2008 
Farm Bill), have been implemented to accelerate the commercialization of advanced biofuels. The 
development of biomass-based value chains is also a major focus of bioenergy sector development 
in many states. Among others, the Tennessee Biofuels Initiative (TBI) is a state sponsored program 
to foster the development of the biofuels sector using switchgrass in Tennessee (Tiller 2011). The 
current progress of conversion technologies for cellulosic biofuel production at a pilot facility 
created under the TBI has motivated discussion about developing a commercial-scale cellulosic 
biofuel plant in Tennessee.

The amounts of biomass required to supply a commercial-scale conversion facility are 
significant given that biomass has low energy density. In addition, most of the potential lands for 
biomass production in Tennessee are currently idled or are used for less transportation-intensive 
traditional crop activities, such as pasture. Converting agricultural lands to biomass production 
implies additional traffic on roadways that connect fields and the conversion facility. Because more 
truck traffic to haul biomass is expected for an industrialized biofuel sector, one related potential 
environmental issue is increased emissions from hauling feedstock to the conversion facility. This 
environmental issue is presumably important because road transportation is a major source of 
greenhouse gas (GHG) emissions (Fürst and Oberhofer 2012).

Switchgrass and biomass sorghum have been considered as potential feedstocks for biofuel 
production in the southeast region (Turhollow et al. 2014). Switchgrass has consistent yields over 
diverse weather conditions and requires relatively low inputs compared with field crops (Wright and 
Turhollow 2010). Biomass sorghum also performs well in a wide range of soil types and drought 
conditions (Rooney et al. 2007). Both energy crops are capable of producing high biomass yields on 
marginal soils common to the region, including Tennessee. Switchgrass is a perennial grass which 
can be planted on pasture and croplands, while biomass sorghum as an annual crop is generally 
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cultivated on cropland. In Tennessee, croplands are primarily located in the west side of the state 
given the flat terrain near the Mississippi River, while hay and pasturelands are common in the 
eastern region because of the varied topography related to the Appalachian Mountains. Different 
demand for land types from two energy crops and the geographically diverse landscape across the 
state presumably have different effects on land use for feedstock production and the dispersion of 
the feedstock draw area in Tennessee, which consequently influences the emissions from trucking 
feedstock to the conversion facility.

Given the potential for developing a biomass-based bioenergy industry in Tennessee, this study 
aims to achieve two objectives: 1) to evaluate the economics of the two dedicated energy crops’ 
supply chains in various regions of the state, and 2) to assess the transportation emissions produced 
from hauling biomass feedstocks to the conversion facility with the least-cost supply chains by 
region identified in Objective 1. Our analysis generates insights regarding the impacts of crop 
systems and spatial characteristics on feedstock cost and GHG emissions of feedstock transportation 
in different regions. This information can benefit bioenergy sector stakeholders, including farmers, 
private investors, local communities, and regional development agencies.

LITERATURE REVIEW

Economics of biomass supply chains has been a major focus in the literature of bioenergy because 
the cost of feedstock supply chains is very influential to the commercialization of cellulosic biofuels 
(Hess et al. 2007). The biomass feedstock supply chain includes activities of feedstock production, 
harvest, storage, and transportation from field to conversion facility. The delivered cost of biomass 
feedstock can be influenced by the characteristics at each step of the supply chain, such as the type 
of harvesting method (e.g., bale or chop), choice of preprocessing operation (e.g., compression, 
pelletization), storage method used (e.g., outdoor or indoor), and mode of transportation (e.g., truck, 
rail, ocean). An extensive survey of recent literature in economic analysis of biomass and biofuel 
supply chains can be found in Sharma et al. (2013) and Mafakheri and Nasiri (2014). A brief review 
of the studies focusing on the transportation element in feedstock and biofuel supply chains is 
offered in this section.

Cundiff et al. (1997) developed a two-stage linear programming model to minimize the delivery 
cost of switchgrass through scheduling management for an ethanol plant in Virginia. Considering 
feedstock yield variations during different growing and harvest conditions, their findings suggest 
that average transportation cost was approximate $8−$10/dry metric ton (Mg) for an average travel 
distance of 22 km. Morrow et al. (2006) developed a transportation distance optimization model to 
minimize costs of distributing a range of ethanol blends (E5, E10, and E16) to U.S. metropolitan 
areas. They concluded that pipeline is the most cost effective means for ethanol transportation 
and emphasized the importance of an efficient transportation system for the competitiveness of 
the U.S. biofuel industry. Ekşioğlu et al. (2010) applied a mixed-integer programming model to 
minimize the delivery cost of biofuels by determining the mode use, shipment schedule, shipment 
size, production, and inventory schedule in a Mississippi case study. Barge and rail were considered 
for feedstock transportation and their results showed that barge is a more economic mode when 
demand for feedstock increases. Roni et al. (2014) analyzed the rail cost of biofuel and biomass 
using Surface Transportation Board’s Waybill data, and derived the relationship between rail cost 
and car type, shipment size, commodity type, and rail movement type for both biofuel and biomass.

A number of studies have applied a geographic information system (GIS) to locate the 
potential sources of feedstock, determine location of biorefineries, and assess the transportation 
cost of feedstock or biofuel. Khachatryan et al. (2009) applied GIS to examine the availability 
of agricultural crop residue for cellulosic ethanol in the state of Washington and estimated the 
feedstock farm gate cost and transportation cost. They derived a supply curve of feedstock and 
suggested that plant capacity, transportation distances, and fuel price are influential to feedstock 
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cost. Freppaz et al. (2004) integrated the GIS tool and mathematical programming in a Decision 
Support System to evaluate the availability of forest biomass and determine the location and size of 
plants in Val Bormida, Italy. Their results showed that local biomass availability can support 16% of 
energy need in the region at a reasonable cost. Marvin et al. (2012) estimated the net present value 
of a biomass-to-ethanol supply chain using a mixed-integer programming model and spatial data. 
Considering five agricultural residues in nine states in the U.S. midwest, the model determined the 
optimal locations and capacities of biofuel plants and biomass harvest and distribution. Using high 
resolution spatial data in Tennessee generated from GIS, Larson et al. (2015) assessed the plant 
gate cost of switchgrass using a mixed-integer programming model and evaluated the impact of dry 
matter loss during storage on the distribution of feedstock. They concluded that the storage loss is 
influential to the schedule of feedstock delivery and pattern.

More recent attention has been drawn to the environmental or social impacts of increased traffic 
induced by biomass feedstock supply chains. For instance, Kumar et al. (2006) suggested that the 
projected increase in truck traffic is likely to increase public resistance if the plant is located close 
to a community, and that rail transport reduces the number of loads and produces less emissions 
and congestion. Mahmudi and Flynn (2006) found that while rail shipments of biomass feedstock 
reduces emissions and congestion, it is not economical unless the shipping distance exceeds 120 
miles. Tyner and Rismiller (2010) evaluated the impact of establishing a cellulosic biofuel industry 
on local road infrastructure in Indiana and suggested that considerable truckloads and high vehicle 
trip miles (VTM) surrounding each biofuel plant are anticipated. Moreover, the cellulosic biofuel 
industry would generate two to five times more VTM per gallon of biofuel, or up to 255% more 
ton-miles per gallon of biofuel compared with the existing grain-based biofuel industry. Jäppinen 
et al. (2011) indicated that it is crucial to consider local conditions, including the properties of the 
transportation network for hauling feedstock, when evaluating the sustainability of biomass-based 
energy production. Jäppinen et al. (2013) evaluated two case studies of wood chips supply chains 
and found that rail transportation to supplement direct truck transportation for wood chips may 
reduce supply chain GHG emissions. Also, biomass availability and modes of transportation to a 
given site should be taken into account when assessing GHG emissions in a biomass supply chain. 

The aforementioned studies have highlighted the importance of the transportation sector in 
an efficient biomass and biofuel supply chain, and the concern of environmental and social impact 
of high traffic volume related to feedstock transportation. The current study complements the 
literature by analyzing the impacts of diverse crop systems and spatial characteristics on feedstock 
transportation cost and GHG emissions through an empirical study of comparing two potential 
energy crops (switchgrass and biomass sorghum) in Tennessee.  

METHODS AND DATA
 
The analysis of supply chain costs of switchgrass and biomass sorghum and GHG emissions from 
transporting the feedstock to a conversion facility was divided into two major steps. First, the 
least-cost feedstock draw area and location of the conversion facility was identified for each of 
three regions in Tennessee (eastern, central, and western) by the Bioenergy Site and Technology 
Assessment (BeSTA) model developed in Larson et al. (2015). The cost-minimization solution 
located the most efficient road links within the feedstock draw area to the biorefinery based on 
the real road network for each region. Second, the additional emissions produced from feedstock 
transportation were estimated by applying an emission modeling system developed by the U.S. 
Environmental Protection Agency (US EPA 2012) to the vehicle traffic flow data generated in the 
first step.

The capacity of the commercial-scale conversion facility was assumed to be 50 million gallons 
per year (MGY) of biofuel (Tembo et al. 2003). The conversion facility considered in this study 
was a single-feedstock conversion facility that would not process mixed feedstock. Supply chain 
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costs were evaluated for large rectangular bale harvest, storage, and transportation, a commonly 
used system for the harvest and storage of hay that can also be used for switchgrass (Mooney et al. 
2012). The potential feedstock supply area includes Tennessee and a buffer area of 50 miles along 
the state’s border to allow facilities to source feedstock from adjacent states if biofuel plants are 
sited near the border. Three geographic regions (eastern, central, and western) capture the spatial 
variations as defined by University of Tennessee Extension (University of Tennessee 2014). The 
potential locations for conversion facilities was assumed to be limited to feasible industrial parks 
with access to water, power, and roads, as well as sufficient storage space in each region. 

Step 1: Determining Dedicated Energy Crops Supply Chains 

The BeSTA model is a spatially oriented mixed-integer programming model that considers the 
sequence of production, harvest, storage, and transportation activities on a monthly basis within 
a year (Larson et al. 2015). The BeSTA model incorporates spatial variations and the within-
year dynamics of switchgrass operations in the optimization of biomass feedstock supply chains, 
including location of the conversion facility, feedstock draw area, and feedstock delivery routes. 
The model objective function is to minimize opportunity cost of land, production cost, harvest cost, 
storage cost, and transportation cost of biomass feedstock to the conversion facility. 

Certain constraints related to feedstock production, harvest, storage, and transportation activities 
were imposed in the BeSTA model. The annual supply of feedstock was constrained by feedstock 
yields and harvested area. In addition, monthly feedstock harvested in each land were subject to 
feedstock yields and available harvested area in the land unit. Moreover, total monthly harvested 
feedstock was limited by available harvest hours and machine availability. Constraints were also 
imposed on storage and transportation in each month. Monthly harvested feedstock was larger than 
feedstock shipped to the conversion facility after adjusting dry matter losses during transportation. 
Monthly harvested feedstock also must be greater than feedstock placed into storage in each month 
of harvest season. Delivered feedstock could not exceed accumulated storage of feedstock.  In 
addition, feedstock deliveries were assumed to meet ethanol production each month. Additional 
constraints on the mass balance between harvest and inventory were imposed in the model. Details 
on the mathematical equations of the BeSTA model can be found in the Appendix.

Detailed spatial data were used for the supply chain analysis. The potential feedstock draw 
area was disaggregated into a vector database of contiguous five-square-mile land resource units 
based on remote sensing data within the feedstock supply regions. Public lands in the region were 
excluded from the analysis. The land resource units are the geographic units used to model areas 
in existing agricultural production activities (e.g., barley, corn, cotton, hay, oats, pasture, soybean, 
sorghum, and wheat) and energy crop production. Currently there is not a market for the two energy 
crops (switchgrass and biomass sorghum). Therefore, a breakeven price of each energy crop was 
determined by its production cost plus the net revenue from the next best agricultural production 
alternative, or land rent, whichever is higher (the opportunity cost of using the land for energy crop 
production) (Larson et al. 2015).

The street level network was applied to estimate transportation costs of biomass from the field 
to the facility. The hauling distance from the field to the conversion facility was calculated as the 
distance between the center point of the land resource unit in which feedstock is produced and the 
center point of the land resource unit where the conversion facility is located. The most accessible 
routes between land resource units and the facility were identified based on the speed limits of each 
type of roads following the hierarchy: 1) primary/major roads, 2) secondary roads, 3) local and 
rural roads, and 4) other roads. The five-axle 48-ft semi-tractor trailers were used to transport baled 
feedstock. The loading capacity of the flatbed trailer was assumed to carry 24 large square bales and 
totaled 14 dry tons per load. Transportation costs included labor, operating, and ownership costs of 
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tractors with front-end loaders used for loading and unloading of bales, and semi-trucks with trailers 
used for transporting bales from the field to the conversion facility. 

It was assumed that feedstock is harvested once per year using large rectangular balers. The 
bales are then placed into storage at the edge of the field until transported to a conversion facility. 
The harvest costs consisted of machinery operating and ownership costs plus labor costs for 
mowing, raking, baling, and loading operations. Storage costs included the materials (tarps and 
wooden pallets) used to protect bales stored on the edge of field, and the labor and tractor costs for 
material handling and baling. Dry matter losses for storage periods of up to 365 days for the large 
rectangular bales were modeled using estimated losses by time in storage for switchgrass from 
Mooney et al. (2012). Labor costs, operating and ownership costs for equipment and vehicles, and 
other inputs used for energy crop supply chains were obtained from Larson et al. (2010) and the 
University of Tennessee Institute of Agriculture (UTIA 2011).

Traditional crop yields at the sub-county level were taken from the SSURGO database 
maintained by the U.S. Department of Agriculture (U.S. Department of Agriculture 2014). Areas in 
each traditional crop for each land resource unit were taken from the Cropland Data Layer Database 
(U.S. Department of Agriculture 2011). Data for traditional crop prices were for the 2010-11 crop 
year (U.S. Department of Agriculture 2012). Switchgrass and biomass sorghum yields were obtained 
from Jager et al. (2010) and U.S. Department of Energy (2011). The yields of mature switchgrass 
was estimated around 8.0−9.4 dry ton (dt) per acre. The yields of mature biomass sorghum after 
adjusting the lodging problem that causes stalks falling over during harvest ranged between 5.5 dt/
acre and 12.0 dt/acre. 

Step 2: Determining Truck Traffic Emissions from Feedstock Hauls

The Motor Vehicle Emissions Simulator (MOVES), an emission modeling program designed under 
the guidance of the U.S. EPA (U.S. EPA 2012), was used to estimate equivalent carbon dioxide 
(CO2e) emissions from mobile sources. The version of the program used in this study is MOVES 
(2010b). MOVES is a regulatory mobile emission model that can be used to perform a quantitative 
estimate of project-level emission inventories (Vallamsundar and Lin 2011). MOVES can be used to 
simulate transportation emissions at various scales, such as individual roads and intersections at the 
county, region, and nationwide level. A number of recent studies have applied MOVES to estimate 
local or regional transportation emissions impacts of road projects or traffic management (e.g., Tao 
et al. 2011, Bigazzi and Figliozzi 2012, Papson et al. 2012, Xie et al. 2012, Mukherjee et al. 2013, 
Ghafghazi and Hatzopoulou 2014, Guo and Zhang 2014).

The following assumptions were made to facilitate the modeling of trucking emissions from 
feedstock transportation using MOVES. First, the Project scale option in MOVES was selected to 
permit emission modeling for individual road links. Second, the calendar year used in the model was 
2010. Third, a representative month of the year that characterized each season of the year, i.e., April, 
July, October, and January, was used in the model to reduce computational time. Deliveries typically 
occurred from Monday through Friday during these aforementioned months. Fourth, meteorological 
data in a single county were used to represent all the surrounding counties in the area. Thus, Blount, 
Cumberland, Davidson, and Madison counties in Tennessee were selected given the presence of a 
regional airport located in each county. The surface hourly temperature and humidity data for these 
counties were collected from the National Climatic Data Center. Finally, the combination short-haul 
truck option was selected since it has the tractor-trailer type vehicle configuration. Emission factors 
generated from the models were then used to simulate the emissions from the additional truck traffic 
of feedstock hauls between farms and conversion facilities in the optimal energy crop supply chains 
determined in Step 1.
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RESULTS

Economical Efficient Feedstock Supply Chains

Table 1 presents the total cost of switchgrass and biomass sorghum for a 50-MGY conversion 
facility. The total cost for delivering about 658,000 tons per year of switchgrass to the least-cost site 
in each of the three regions ranged between $45.9 million and $47.7 million. The average cost per 
dry ton of switchgrass in the eastern and central regions was relatively lower, about $70, while the 
cost increased to more than $72 per dry ton if switchgrass was produced in the west. The harvest 
cost accounted for more than half of the total supply chains cost, while transportation costs were 
estimated at more than 20% of total cost in each region. Production cost, including the opportunity 
cost of land, made up around 20% of total cost in all regions.

Table 1: Total Costs, Harvested Area, and Vehicle Miles Traveled (VMT) of Supplying   
 Switchgrass and Biomass Sorghum to Conversion Facility by Region in Tennessee 

Switchgrass Biomass Sorghum
Region East Central West East Central West
Conversion Facility 
Location

McMinn 
County

Bedford 
County

Weakley 
County

Marion 
County

Giles 
County

Obion 
County

Total cost (million $) 46.3 45.9 47.7 116.2 101.2 73.5

Production (million $) 9.2 9.2 9.3 69.3 59.1 31.4 

Harvest (million $) 23.9 23.9 24.0 28.3 27.8 25.2

Storage (million $) 3.3 3.3 3.3 3.3 3.3 3.3
Transportation 
(million $) 10.0 9.4 11.1 15.3 11.0 13.5
Cost per ton ($) 70.4 69.7 72.4 176.7 153.8 111.7
Total harvested area 
(1,000 acres) 79.7 79.9 80.5 108.5 105.3 88.4
VMT (1,000 miles) 1,733 1,540 2,088 4,385 4,006 3,565

Compared with the supply chain cost of switchgrass, biomass sorghum was a more expensive 
feedstock to produce in Tennessee. The total supply chain costs of biomass sorghum ranged between 
$73.5 million and $116.2 million across the three regions. In the eastern region, the total plant gate 
cost for biomass sorghum was nearly 150% higher than the cost of switchgrass using the same harvest 
and storage system. The feedstock costs in east Tennessee were the highest due to lower yields of 
biomass sorghum. In addition, the cost of hauling biomass sorghum to the conversion facility in east 
Tennessee was higher than for the sites in the central and western regions due to the larger draw 
area of biomass sorghum in east Tennessee. Land suitable for biomass sorghum production was 
smaller and less concentrated than in the other regions. Production costs of biomass sorghum were 
the highest among all costs. Unlike perennial switchgrass, biomass sorghum is an annual crop that 
is reestablished each year and had higher fertilizer and chemical costs that contributed to the higher 
production costs relative to switchgrass. Transportation cost accounted for about 11% to 18% of the 
total supply chain cost.

Harvested area for switchgrass in each of the three regions was similar, about 80,000 acres (see 
Table 1 and Figure 1). The total feedstock draw area was influenced by the yield of switchgrass in 
each land resource unit and the availability of lower opportunity cost of hay and pasture lands. As the 
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opportunity cost of converting hay and pastureland to switchgrass production was the least among 
all crops in Tennessee, the available hay and pastureland in each land resource unit determines the 
density of switchgrass produced in that spatial unit. Figure 1 shows that nearly all area used for 
switchgrass production in east and central Tennessee were from hay and pasture lands. About one-
third of harvested area was from croplands in west Tennessee given the relatively fewer acreages of 
hay and pasture within the region.

Figure 1: Land Use Change for Dedicated Energy Crop Production

Harvested areas of biomass sorghum in east Tennessee were larger than in the central and 
western regions (Table 1 and Figure 1). The density of feedstock production in each land resource 
unit in the east region was smaller. In contrast, available crop land and yields of biomass sorghum in 
central and west Tennessee were higher, thus generating higher feedstock production density in land 
resource units and smaller feedstock draw area. Total harvested area in the eastern region reached 
more than 108,000 acres, while 20% less area [1 – (88.4 thousand acres / 108.5 thousand acres)] 
was needed for the conversion facility in west Tennessee. In addition, biomass sorghum can only be 
planted on crop lands, and a lack of available crop land in east Tennessee resulted in a larger area 
to produce biomass sorghum. The optimal locations of the conversion facilities in all three regions 
were close to the state’s border, primarily driven by the yield of biomass sorghum and availability 
of croplands in land resource units. 

GHG Emissions from Feedstock Transportation

Hauling switchgrass to the optimal site in west Tennessee generated the highest Vehicle Miles 
Traveled (VMT), over 2.0 million miles (Table 1). About 1.5 million miles were traveled for 
feedstock deliveries to the conversion facility in central Tennessee. Fewer truck emissions were 
produced than the selected sites in the other two regions given the smaller feedstock draw area and 
VMT (Figure 2). In contrast, VMTs were much higher for switchgrass in the western region due to 
a smaller availability of less expensive hay and pasture lands in the region. This region produced 
the most emissions from feedstock transportation, about 6,350 tons of CO2e annually. For biomass 
sorghum, the VMT to the conversion facility in east Tennessee was the highest (Table 1), followed 
by the facility in the central region. Given the higher density of crop lands located in west Tennessee, 
the VMT of biomass sorghum to the conversion facility was the lowest among three regions, over 
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3.5 million miles. Feedstock transportation emissions of CO2e of more than 8,500 tons per year were 
estimated for the region.

Figure 2: Transportation Emissions (CO2e) of Energy Crops to the Conversion 
Facility by Region in Tennessee 

The summary of supply chain costs and CO2e emissions of feedstock transportation by region 
in Table 1 and Figure 2 shows that switchgrass-based biofuels have much lower feedstock cost 
compared with biomass sorghum. Similarly, the emissions generated from hauling biomass sorghum 
to the conversion facility were much higher than that associated with transporting switchgrass due to 
the more dispersed feedstock draw area and the supply location of feedstock. Although the differences 
in the supply chains’ cost of switchgrass among all three regions were small, the emissions produced 
from delivering feedstock to the conversion facility in the central region were clearly lower than the 
other two regions. Thus, the conversion facility using switchgrass as feedstock located in central 
Tennessee was found to be the most sustainable with the least economic costs and hauling emissions 
of feedstock.

The least cost location for a switchgrass biofuel plant was Bedford County in central Tennessee 
(see Table 1 and Figure 2). VMT and transportation emissions related to transport of switchgrass 
to the facility in the related counties are presented in Figure 3. With the facility located in Bedford 
County, more than 1.0 million trucking miles were expected due to feedstock delivery and resulted 
in nearly 2,800 tons of CO2e per year within the county. Additional traffic was also incurred in 
the surrounding counties (e.g., Marshall County, Coffee County, Rutherford County, and Moore 
County) and produced about 200 tons of CO2e annually in these counties.
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Figure 3: VMT and CO2e of Switchgrass Transportation to the Conversion Facility 
in Related Counties in Central Tennessee

CONCLUSIONS

Driven by the increasing interests in the development of advanced biofuel in the U.S., the efficiency 
of the supply chains providing biomass feedstock to biorefineries is under scrutiny. In addition, 
the potential environmental impacts of feedstock transportation have generated increased attention 
given the potential increases in traffic on the current road system. This study estimates the supply 
chains’ cost and hauling emissions of two feedstocks (switchgrass and biomass sorghum) in east, 
central, and west Tennessee. A spatially-oriented mathematical programming model utilizing crop 
and pasture land availability, yield, the real road network, and other data was used to determine the 
optimal location of a single-feedstock 50-MGY conversion facility, associated feedstock draw area, 
and delivery routes on the road network. Based on the output of the cost minimization from the 
model, the emissions of additional traffic from feedstock transportation in each region is simulated 
using the U.S. EPA’s emissions modeling tool.

Our results indicate that the cost of biomass feedstock supply chains is influenced by the 
yield of the feedstock, available crop land, and opportunity cost of converting traditional crops to 
energy crops. From an economic standpoint, switchgrass is found to be more feasible than biomass 
sorghum for cellulosic biofuel production in Tennessee. Significantly higher supply chain costs of 
biomass sorghum are primarily driven by its production cost. The inputs required to produce an 
annual crop (biomass sorghum) are more than for a perennial grass (switchgrass). Furthermore, 
limited availability of crop land and less fertile soil, particularly in east Tennessee, generate a more 
dispersed feedstock draw area and higher transportation cost.

Additional truck traffic from biomass feedstock hauling produces more emissions in the study 
region. Comparing trucking emissions, hauling biomass sorghum to the conversion facility created 
significantly more GHG emissions than delivering switchgrass. The higher emission level was 
related to substantial vehicle travel miles associated with biomass sorghum deliveries resulting from 
the larger feedstock draw area. Hauling switchgrass to the optimal site in central Tennessee produces 
the least emissions. Our findings, in line with Jäppinen et al. (2013), suggest that availability of land 
types and the geographically diverse landscape across the state are influential to the supply chains’ 
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cost and feedstock transportation emissions for biomass feedstock. Thus, spatial characteristics 
will be important elements when designing a commercial-scale bioenergy sector in the regional 
development plan.
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APPENDIX

The cost of energy crops at the conversion facility gate is defined as: 

(1) 𝑇𝑇𝑇𝑇𝐹𝐹 = 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇ℎ𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜 + 𝑇𝑇𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠𝑎𝑎 + 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

where 𝑇𝑇𝑇𝑇𝐹𝐹 is the total economic cost ($) of the biomass supply chain, and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 
𝑇𝑇ℎ𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜 , 𝑇𝑇𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠𝑎𝑎 , and 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 are opportunity costs from land conversion, production cost, 
harvest cost, storage cost, and transportation cost of energy crops, respectively. Table A1 
summarizes the definition of the parameters and variables used in the equations.   

The opportunity cost for energy crops (either switchgrass or biomass sorghum) production is 
defined as the profit of previous crop in equation (2). If the net revenue of previous crop is less than 
the county-level land rent, the land rent is used as the opportunity cost instead. The production cost 
in equation (3) comprise both amortized establishment cost of the first year and an annual 
maintenance cost. Harvest cost factor (Sigma) in equation (4) includes equipment ownership cost, 
operating cost, operating interest cost, and labor cost. Similarly, cost of storage material, equipment 
ownership, storage operation, operating interest, and labor are considered in the storage cost factor 
(γ) in equation (5). The transportation cost factor, 𝜃𝜃, in equation (6) considers loading and unloading 
costs, labor costs, and machinery costs. 

(2) 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  {
∑ (𝑃𝑃𝑜𝑜𝑜𝑜𝑝𝑝𝑎𝑎𝑖𝑖𝑖𝑖∗ 𝑌𝑌𝑜𝑜𝑎𝑎𝑌𝑌𝑝𝑝𝑖𝑖𝑖𝑖− 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖

𝑌𝑌𝑜𝑜𝑎𝑎𝑌𝑌𝑝𝑝𝑖𝑖
𝑠𝑠𝑠𝑠𝑖𝑖 ∗ 𝑋𝑋𝑇𝑇𝑜𝑜𝑜𝑜)𝑜𝑜𝑜𝑜 , if (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜 ∗  𝑌𝑌𝑃𝑃𝑃𝑃𝑌𝑌𝑌𝑌𝑜𝑜𝑜𝑜 −  𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜) − 𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜 ≥ 0 

 ∑ (  𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
𝑌𝑌𝑜𝑜𝑎𝑎𝑌𝑌𝑝𝑝𝑖𝑖

𝑠𝑠𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜 ∗ 𝑋𝑋𝑇𝑇𝑜𝑜𝑜𝑜) ,      if (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜 ∗  𝑌𝑌𝑃𝑃𝑃𝑃𝑌𝑌𝑌𝑌𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜) − 𝐿𝐿𝐿𝐿𝑜𝑜𝑜𝑜 < 0 

(3) 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ ( Est+AM
𝑌𝑌𝑜𝑜𝑎𝑎𝑌𝑌𝑝𝑝𝑖𝑖

𝑠𝑠𝑠𝑠𝑖𝑖 ∗ 𝑋𝑋𝑇𝑇𝑜𝑜𝑜𝑜)𝑜𝑜𝑜𝑜  

(4) 𝑇𝑇ℎ𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜 = ∑ ( Sigma𝑖𝑖
𝑌𝑌𝑜𝑜𝑎𝑎𝑌𝑌𝑝𝑝𝑖𝑖

𝑠𝑠𝑠𝑠𝑖𝑖 × 𝑋𝑋𝑇𝑇𝑜𝑜𝑜𝑜 )𝑜𝑜𝑜𝑜

(5) 𝑇𝑇𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑠𝑠𝑎𝑎 = ∑ 𝛾𝛾𝑜𝑜𝑜𝑜 ∗ 𝑁𝑁𝑋𝑋𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜

(6) 𝑇𝑇𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ∑ 𝜃𝜃𝑜𝑜 × ∑ 𝑋𝑋𝑋𝑋𝑋𝑋𝑚𝑚𝑖𝑖𝑖𝑖+∑ 𝑋𝑋𝑋𝑋𝑋𝑋𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖
1−𝐷𝐷𝐷𝐷𝐿𝐿𝑋𝑋𝑜𝑜

Subject to:

Land use constraints:

(7) 𝐴𝐴𝑜𝑜𝑜𝑜 ≤  𝑃𝑃𝐴𝐴𝑁𝑁𝑜𝑜 × 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜 ,∀ 𝑃𝑃, 𝑝𝑝

(8) 𝑋𝑋𝑇𝑇𝑜𝑜𝑜𝑜 ≤  𝑌𝑌𝑃𝑃𝑃𝑃𝑌𝑌𝑌𝑌𝑜𝑜
𝑎𝑎𝑠𝑠𝑜𝑜 × 𝐴𝐴𝑜𝑜𝑜𝑜 , ∀ 𝑃𝑃, 𝑝𝑝

Harvest constraints:

(9) 𝑋𝑋𝑇𝑇𝑜𝑜𝑜𝑜 −  ∑ 𝑋𝑋𝑋𝑋𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚 ≥ 0,   ∀ 𝑃𝑃, 𝑝𝑝

(10) ∑ 𝑋𝑋𝑋𝑋𝑚𝑚𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑎𝑎𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝜆𝜆  ×  𝑃𝑃𝑎𝑎𝑟𝑟𝑃𝑃𝑎𝑎𝑟𝑟𝑎𝑎𝑚𝑚,𝑜𝑜,𝑜𝑜, 𝐷𝐷𝑃𝑃𝑃𝑃 ≤ 𝑚𝑚 ≤ 𝐹𝐹𝑃𝑃𝐹𝐹 & ∀ 𝑚𝑚

(11) 𝑋𝑋𝑋𝑋𝑚𝑚𝑜𝑜𝑜𝑜 = 0 , 𝑀𝑀𝑎𝑎𝑃𝑃𝑃𝑃ℎ ≤ 𝑚𝑚 ≤ 𝑂𝑂𝑃𝑃𝑟𝑟 ∀ 𝑚𝑚, 𝑃𝑃, 𝑝𝑝
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(12) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚
𝑘𝑘 × 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑁𝑁𝑜𝑜𝑚𝑚 − ∑ (𝑁𝑁𝑚𝑚𝑁𝑁𝑖𝑖

𝑘𝑘 × 𝐴𝐴𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚)𝑖𝑖,𝑚𝑚 ≥ 0 , ∀ 𝑁𝑁  

Harvest-inventory balance constraints: 

(13) ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚
2
𝑚𝑚 = 𝑁𝑁𝐴𝐴𝑚𝑚𝑖𝑖 − 𝑋𝑋𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

1−𝐷𝐷𝐷𝐷𝐷𝐷𝑋𝑋 ,  𝑁𝑁𝑜𝑜𝑎𝑎 ≤ 𝑁𝑁 ≤ 𝐹𝐹𝑎𝑎𝑁𝑁 & ∀ 𝑁𝑁, 𝑖𝑖, 𝑝𝑝  

(14)  𝑁𝑁𝑁𝑁(𝑚𝑚+1)𝑖𝑖𝑚𝑚𝑚𝑚 = (1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁𝑚𝑚𝑚𝑚) × 𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 +  𝑁𝑁𝑁𝑁𝑁𝑁(𝑚𝑚+1)𝑖𝑖𝑚𝑚𝑚𝑚 , 𝑁𝑁𝑜𝑜𝑎𝑎 ≤ 𝑁𝑁 ≤ 𝐹𝐹𝑎𝑎𝑁𝑁 & ∀ 𝑁𝑁, 𝑖𝑖, 𝑝𝑝, 𝑚𝑚  

(15) 𝑁𝑁𝑁𝑁(𝑚𝑚+1)𝑖𝑖𝑚𝑚𝑚𝑚 = (1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁𝑚𝑚𝑚𝑚) × 𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 −  𝑋𝑋𝑋𝑋𝑋𝑋(𝑚𝑚+1)𝑚𝑚𝑚𝑚𝑖𝑖
1−𝐷𝐷𝐷𝐷𝐷𝐷𝑋𝑋 , 𝐷𝐷𝑎𝑎𝑜𝑜 ≤ 𝑁𝑁 ≤ 𝑂𝑂𝑂𝑂𝑚𝑚 ∀ 𝑁𝑁, 𝑖𝑖, 𝑝𝑝, 𝑚𝑚   

(16) 𝑁𝑁𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 = 0 ,  𝑁𝑁 = 𝑂𝑂𝑂𝑂𝑚𝑚 & ∀ 𝑁𝑁, 𝑖𝑖, 𝑝𝑝, 𝑚𝑚  

Demand constraints 

(17) λ(∑ 𝑁𝑁𝑋𝑋𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚 + ∑ 𝑁𝑁𝑋𝑋𝑂𝑂𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚)𝑖𝑖,𝑚𝑚,𝑚𝑚𝑖𝑖,𝑚𝑚 = 𝐷𝐷𝐷𝐷𝑚𝑚 , ∀ 𝑁𝑁  
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Table A1. Definitions of Subscripts, Parameters and Variables

Unit Definition
Subscripts

i locations of energy crop production field
m month
p crops (hay & pasture, corn, soybean, wheat)
t storage protection method
k type of machinery (tractor, mower, loader, rake)

Parameters
Priceip $/unit traditional crop price 
Yieldip acre/unit tradition crop yield
PCip $/acre production cost of traditional crop
Yieldi 

swi d ton/acre yield for energy crop in each hexagon
LRip $/acre land rent of traditional crop
Est $/acre Establishment cost in the first year
AM $/acre Annual maintenance cost
Sigmai $/acre cost of harvesting energy crop
γit $/d ton cost of storing energy crop
θi $/d ton cost of transporting energy crop from field to facility
aaip acre cropland available in each hexagon for each crop
CapUnit gallon/year annual capacity of a conversion facility
λ gallon/d ton energy crop-ethanol conversional rate
rateavam % ratio of working hours in each month to total 
avehourm hour average working hours of  machinery in each month 
mtbi hour/acre machine time per acre for each machinery
PASp % maximum percent of land converted
DMLT % dry matter loss during transportation
DMLSmt % dry matter loss during storage
Ddm gallon/month monthly demand for ethanol
Variables
A acre ha of energy crop produced annually
AH acre ha of energy crop harvested monthly 
XC d ton dry weight of energy crop produced annually  
XH d ton dry weight of energy crop harvested monthly 
XTN d ton dry weight of energy crop transported directly to the facility after 

harvest
NXS d ton dry weight of energy crop newly stored monthly from November to 

February
XS d ton dry weight of energy crop stored monthly from November to October
XTO d ton dry weight of energy crop transported from storage to the facility
Numb unit number of equipment used in harvest
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by Shuhong Ma and Kara M. Kockelman

Transportation	system	improvements	do	not	provide	simply	travel	time	savings,	for	a	fixed	trip	table;	
they	affect	trip	destinations,	modes,	times	of	day,		and,	ultimately,	home	and	business	location	choices.	
This paper examines the welfare (or willingness-to-pay) impacts of system changes by bringing 
residential location choice into a three-layer nested logit model to more holistically anticipate the 
regional	welfare	impacts	of	various	system	shifts	using	logsum	differences	(which	quantify	changes	
in consumer surplus). Here, home value is a function of home price, size, and accessibility; and 
accessibility is a function of travel times and costs, vis-à-vis all mode and destination options. The 
model is applied to a sample of 60 Austin, Texas, zones to estimate home buyers’ welfare impacts 
across	various	scenarios,	with	different	transit	fares,	automobile	operating	costs,	travel	times,	and	
home prices. 

Results suggest that new locators’ choice probabilities for rural and suburban zones are more 
sensitive to changing regional access, while urban and central business zone choice probabilities 
are more impacted by home price shifts. Automobile costs play a more important role in residential 
location choices in these simulations than those of transit, as expected in a typical U.S. setting 
(where automobile travel dominates). When generalized costs of automobile travel are simulated 
to rise 20%, 40%, and 60% (throughout the region), estimated welfare impacts (using normalized 
differences	 in	 logit	 logsum	measures)	 for	 the	 typical	new	home	buying	household	 (with	$70,000	
in annual income and 2.4 household members) are estimated to be quite negative, at -$56,000,  
-$99,000, and -$132,000, respectively. In contrast, when auto’s generalized costs fall everywhere (by 
20%, 40%, and then 60%), welfare impacts are very positive (+$74,000, $172,500, and $320,000, 
respectively).	Such	findings	are	meaningful	for	policymakers,	planners,	and	others	when	anticipating	
the economic impacts of evolving transportation systems, in the face of new investments, rising 
travel demands, distance-based tolls, self-driving vehicles, and other changes.

INTRODUCTION
 
An understanding and consideration of residential location choice is fundamental to behavioral models 
of land use and, ultimately, travel demand (Bina et al. 2006) and community welfare.  Residential 
location choice decisions are influenced by a host of quantifiable and unquantifiable factors (e.g., 
Rossi 1955), including home attributes (like home price, size, and age), travel costs (or/and travel 
times), and access (to freeways and transit stations, schools, jobs, parks and shopping centers), and 
household demographics (like income and the presence of children) (Habib and Kockelman 2008). 
While challenging in execution, home (and business) location models are very valuable to the 
regional, long-run transportation planning process and to land use-transport policymaking (Ommere 
et al. 1999; Pinto 2002; Hollingworth and Miller 1996; Zhou and Kockelman 2011).

The location choice model presented here relies on the method of logsum differences1 under a 
three-layer nested logit (NL) structure (for location, destination, and mode choice), with systematic 
utility modeled as a combination of home price, home size, and neighborhood accessibility. By 
making assumptions about home price, access attributes, travel cost and travel time sensitivity, 
and all model parameters, one can compute choice probabilities for each alternative setting and 
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estimate welfare changes across scenarios (from equivalent variation or willingness-to-pay values), 
as experienced by households looking to locate in a region. While property valuation research 
has long examined the price impacts of local travel system changes (Mohring 1961, Allen 1981, 
Nelson 1982, Bajic 1983, Voith 1991, TenSiethoff  and Kockelman 2002), the approach pursued 
here takes the question of transportation improvements’ welfare impacts to a whole new level, 
using direct measures of welfare economics across multiple and often competing costs shifts (using 
differences in logsums [Ben-Akiva and Lerman 1985], normalized to reflect dollar values, much like 
a willingness-to-pay metric). The expected maximum utility of mode plus destination plus location 
and home choices depend on travel times and travel costs to all potential destinations. This approach 
is consistent with prior research, as cited in the paper (e.g., locators/movers pay much attention to 
work and school travel times, as well as access to major freeways and transit lines), but this paper’s 
recognition of the location choice behavior is very novel.

Accessibility has long been theorized and proven a major determinant of residential location 
choice behavior (Alonso 1964, Zondag and Pieters 2006, and Lee and Waddell 2010), and some 
existing literature helps to illustrate its influence on home location choice. However, a more 
detailed and nuanced analysis is needed to explore the relationships among travel costs and times, 
accessibilities, and home-buyer/residential locator benefits. Moreover, the influence of each factor 
on house buyer benefits and the sensitivity of these benefits with changes in input variables merit 
examination. This work offers such a closer look, which should be of interest to policymakers and 
planners when seeking methods for more rigorous and defensible methods of evaluating project and 
policy impacts.  This work begins with a description of existing, related literature, followed by a 
description of methods and model specifications, regional examples, and key findings. 

BACKGROUND

Home location choice has been modeled in a variety of ways. Many rely on stand-alone choice models 
(e.g., NL, multinomial logit [MNL], and mixed logit specifications) for individual households, in 
isolation or as part of a larger land use model. For regional-scale modeling, many past models have 
kept track of household (and job) count totals at the zonal (aggregate) level. For example, Ben-Akiva 
and Bowman (1998) developed an integrated nested logit model for Bostonians’ residential location 
choices, along with members’ activity and travel schedules. They found that the NL structure did not 
fit the data quite as well as a work-trip-based comparison model. Lee and Waddell (2010) devised 
a two-layer NL model (decision to move or to stay, followed by location choice) and confirmed 
the model’s applicability with a case study in Seattle, Washington. Zhou and Kockelman (2011) 
explored a series of models for household and firm location choice around Austin, Texas, and found 
that that a three-layer NL structure, with location choice nested within home type choice, provided 
reasonable estimates. MNL models have also been popular. For example, Zhou and Kockelman 
(2008a) used such models to simulate location choices for three different household types using 
survey data of recent home buyers in Austin, Texas. They found that working households evaluate 
commute time differently when choosing their home location, with higher home-price-to-income 
ratios having a strong negative impact on their choice probabilities. 

Other papers have examined residential location choice within a larger land use framework. 
Dang et al. (2011) established a household residential location choice model for a mono-centric 
city to quantitatively explore the evolution of urban residential housing consumption based on data 
from a survey in Beijing, China. Findings indicate that the balance between commuting costs and 
housing costs is key in the residential location selection process, similar to findings from Yang 
(2006) and Zhou and Kockelman (2008b). Zhang and Kockelman (2015) developed a spatial general 
equilibrium model to explore the endogenous relations between urban sprawl, job decentralization, 
and traffic congestion, and compared the efficiency and welfare impacts of anti-congestion policies. 
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Results indicate that firms tend to decentralize while households move toward the city center as 
congestion grows. 

To describe the relationship between land-use and residential location choice, many researchers 
have used an accessibility index (AI) as a parameter. Srour et al. (2002) used different accessibility 
indices to estimate residential location choice and noted that job accessibility affects residential 
land values positively in statistically and economically significant ways, with distance to the 
central business district (CBD) and household head’s workplace location playing important roles 
in residential location predictions. Zondag and Pieters (2006) built a move-stay choice model and a 
residential location choice model by home type (with data from The Netherlands), and showed that 
the role of accessibility is significant but small compared with the effect of demographic factors, 
neighborhood amenities, and dwelling attributes. Lee et al. (2010) proposed a time-space prism 
(TSP) accessibility measure, and applied it to residential location choice in the Central Puget Sound 
region. The study confirmed that accessibility is an important factor in residential location choice, 
with individual-specific work accessibility being the most critical consideration. Bina et al. (2006, 
2009) ranked the importance of housing and location attributes (home price, commute time to work, 
perception of crime rate, attractive neighborhood appearance, commute time to school, and access 
to major freeways are the top six) by using linear regression models which utilized an accessibility 
index calibrated from logsums from travel demand models of home-based work trips.

The rule-of-half (RoH) and logsum differences are two typical methods in transport economics 
to estimate welfare. In the case of modeling home location choice, RoH method cannot be used 
for the home buyer/mover benefits calculation since there is no added demand (with just one home 
per household, typically). However, random-utility maximization (RUM) assumptions (where 
decision-makers are assumed to choose the alternatives that benefit them most) are suitable for 
developing a location choice model, and the logsum differences can be used to determine home 
buyer/mover welfare under the assumption that each household chooses its home location to 
maximize its utility function involving all parameters considered. McFadden (1978, 1981) used 
logsum differences based on RUM assumptions (with Gumbel-type error terms) to estimate user 
benefits and losses when their travel (or others’ travel) context changes. Many applications using 
logsums as an evaluation measure have been conducted in Europe, the U.S., and other countries for 
policy (decision) making, land use modeling, and road (congestion) toll demand prediction (Jong 
et al. 2005; EXPEDITE Consortium, 2002; Odeck et al. 2003, Castiglione et al. 2003; Kalmanje 
and Kockelman 2004).  Logsum differences have also been used to evaluate land-use strategies in 
a climate change context.  Geurs et al. (2010) evaluated data from The Netherlands and showed 
that such access benefits (with user benefits calculated using logsum difference following access 
changes) from land-use policy strategies can be quite large compared with investment programs for 
road and public transport infrastructure, largely due to changes in trip production and destination 
utility, which are not measured in the standard rule-of-half benefit measure.

While much research has been conducted on home location choice analysis, previous studies 
typically focus on what and how the factors affect the home buyer’s/mover’s decision. Additionally, 
the majority of home location choice studies are specific cities, districts, or zones based on SP 
(Stated Preference) or RP (Revealed Preference) datasets, under the assumption that people choose 
the home that enables them to achieve the largest utilities. The change in house buyer’s utilities and 
benefits needs to be examined more deeply in a welfare context. Adding to the previous research on 
location choice, this paper presents a three-layer NL model with destination-mode choice nested in 
location choice, using logsum differences to estimate household welfare.
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METHODOLOGY

As discussed above, home location choices regularly represent a trade-off between housing type 
(including variables of home price, size, and age) and site accessibility, with income, household 
size, presence of children, job locations, and other demographic factors also playing roles (Zondag 
and Pieters 2006; Dang et al. 2011; Zhou and Kockelman 2008a, 2011; Habib and Kockelman 
2008). Based on random-utility theory, logit-type models (McFadden 1978) have been widely 
used to explore this important household choice. The MNL framework has been the most common 
approach (Tu and Goldfinch 1996; Hunt et al. 1994; Sermons and Koppelman 2001; Zhou and 
Kockelman 2008a, 2008c), with the assumption that all unobserved factors (among competing home 
alternatives) are uncorrelated and homogeneous. NL models have also been applied here, often to 
predict both home location and home size (Habib and Kockelman 2008; Zondag and Pieters 2006; 
Lee and Waddell 2010) or activity-based accessibility (Ben-Akiva and Bowman 1998).

This study relies on both MNL and NL equations, with systematic utility values that combine 
home price, home size, and logsum accessibility metrics to specify (and then simulate) location 
choice behaviors. The study then uses logsum differences to quantify the welfare effects of 
transportation system changes, along with other model variations. These methods, model structure, 
and applications are described below.

Model Structure for Location Choice

In evaluating home location choice, it is useful to first determine the most important aspects and 
attributes of that choice, such as home price, number of bedrooms, number of living areas, home 
age, lot size, travel time to work and recreation, and so on. This paper uses each home’s price, size, 
and nested logsum-based accessibility metric (shown later, in Eq 7) as the critical choice attributes 
(consistent with recent research2), and employs an MNL specification to estimate the probability of 
choosing each location. A common practice in classifying household location is to use census tracts, 
zip codes, or traffic analysis zones (TAZs) (McFadden 1981; Habib and Kockelman 2008; Bina and 
Kockelman 2009) as the location choice set. This model assumes the region of study is divided into 
L location zones, with each zone serving as a location alternative, and as a potential trip destination 
for the logsums that characterize the origin zone’s accessibility. Since home-location access is based 
on a two-level logsum (for destination and mode choices), the home-choice model specification 
becomes a three-layer nested-logit model structure, as illustrated in Figure 1.

There are three distinct choice dimensions being modeled here, so the structure reflects three 
embedded nests. This NL specification allows clusters of similar options to exhibit correlated error 
terms (Ben-Akiva and Lerman 1985). From top to bottom are location choice, destination choice, 
and finally, mode choice. The top level is the MNL home location zone model, where the probability 
of each household choosing to reside in a zone is computed as a function of home price, home size, 
accessibility, and other variables. The middle level is a destination choice model (for any single trip) 
where people choose a destination for their typical trip to other zones (including origin zone) based 
on the logsums of mode choices (lowest level). Lastly, the lowest level of the NL structure is a mode 
choice model (for the trip between zones) by destination that accounts for the generalized cost (trav-
el cost and travel time) of each mode (only auto and public transit [bus] are considered here). Rea-
sonable behavioral parameter values, as tested by Lemp and Kockelman (2008), were used here to 
characterize preferences. Figure 1 also shows the associated scale parameters (the μ values).
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Figure 1:   Nested Logit Model Structure on Home Location Choice

Logsum Method for User Benefits Estimation

As discussed in the literature review, use of logsum differences is a relatively more recent approach 
for anticipating consumer surplus changes than the more traditional rule-of-half method.3  It also 
comes with much more of a disaggregate perspective on choice dynamics, and requires the presence 
of competing choice alternatives (versus a single demand market, for example, as is common in 
more traditional rule-of-half applications). Logsum differences have been used for welfare analyses 
of land use and environmental policies and in home location choice studies (USDOT 2004; Geurs 
et al. 2010; Lee et al. 2010). When using a logit model with RUM assumptions (i.e., that people 
anticipate and select the alternative that offers them maximum utility), consumer surplus changes 
are calculated as the difference between the expected consumer surplus levels E(CSn) before and 
after the change (i.e., across scenarios), reflecting all alternatives, as follows:

(1) 

where superscript 0 and 1 refer to before and after the change, αn represents the marginal utility of 
income for person n (can also be expressed as dUn/dYn, where Yn is the income of person n), Un is 
the overall utility for person n, Vni is the representative utility (or indirect utility, often expressed as 
a function of travel time and cost) for person n to experience alternative i. Thus, Uni is the overall 
utility for person n choosing alternative i, and Vni denotes the systematic or representative utility for 
person n choosing alternative i.
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In this model, determining the probabilities of a home buyer choosing each location alternative 
is a key step. These probabilities are estimated by evaluating the characteristics of each alternative 
in order to assess an indirect utility associated with the alternative. In an MNL model, this may be 
expressed using Eqs (2) and (3).

(2)
   

 
 
                                          

 
(3) Vi = β1 · Xi1 + β2 · Xi2 + β3 · Xi3 + ··· + βn · Xin

where Pi is the probability of a user/consumer choosing alternative i from alternative choice set K; 
Vi is the representative utility(indirect utility) of alternative i, which is usually a linear function of 
attributes Xi (as shown in equation 3); and	βi is utility coefficient for each attribute.
 
MODEL SPECIFICATION

Some assumptions and simplifications are made in this NL model structure. For the top level, the 
sole variables assumed here to affect the location choice are accessibility, home price, and home 
size. In the second choice stage, the only variables affecting destination choice probabilities are 
the logsums for (auto and transit) mode options. At the bottom level, the only variables assumed 
to affect mode choices are travel time and travel cost (along with alternative-specific constants, or 
ASCs, for each mode).

Based on the previous discussion of the NL model structure and calculation of logsum 
differences, key modeling equations (for generalized trip costs, systematic utilities, and inclusive 
value parameters of the nested choices and choice probabilities) are as follows:

(4) GCldm = VOTT · TIMEldm + COSTldm     Generalized costs                                             

(5) Vldm = ASCm – GCldm   Systematic utilities     

(6)  Expected max. utilities   
  

(7)     Accessibility indices  
            

Each trip’s generalized cost (GCldm) is a linear function of travel time (TIME) and travel cost 
(COST) – which includes any tolls plus (other) operating costs − between each (potential) home 
zone l (1:L) and each destination zone d, via mode m (for transit and auto), with all values of travel 
time (VOTT) assumed to be $12/hr here (consistent with FHWA guidance [2015] and Lemp and 
Kockelman’s [2011] simulations). The systematic utilities (Vldm) of these alternatives (shown in Eq 
5 and 6) are measured in dollars, and include the appropriate mode’s ASC (assumed to be 0 for the 
auto mode and -1.1 for transit, as used by Kockelman and Lemp [2011]). The expected utility of 
a destination zone, d, as shown in Eq. 6, lacks an attractiveness factor.  Usually, destination zones 
differ in the number of work, shopping, recreation, and other opportunities they offer (though TAZ 
boundary decisions often have a target population or population range in mind, so they are often 
roughly equivalent in terms of household trip generation). To avoid introducing land use effects, 
from variations in jobs (by type) or other attraction features, the models used here presume equal 
attractiveness, for household trip making, across all 60 zones, ceteris paribus. Travel times and costs 
vary, however, by mode and to each destination zone, given a starting (home) zone.  So destination 
zones are not equally attractive once travel costs are taken into account.



73

JTRF Volume 55 No. 1, Spring 2016

Equation 7’s accessibility metric, AIl, is the logsum, Γl, which denotes the inclusive value or 
expected maximum utility of the two-level (destination and mode) choices available to a home 
zone l. This term requires no normalizing coefficient, since the utilities, V, are already measured in 
dollars. Finally, at top level of the effectively three-level NL framework, the household’s expected 
choice probability of each location is as follows:

(8) 

(9) Ul = αl · Pl + α2 · SFl + α3 · AIl

where Pr(.) represents the probability of a particular choice (home location choice); U denotes the 
expected maximum utility of the top level alternative; SF denotes the square footage (home size); 
and P denotes the home price. The α1,	α2, and α3 are indirect utility slope parameters on home 
price, home size, and accessibility, which vary with each potential home zone l. In the following 
example, the values of α1 and α2 were calculated using Zhou and Kockelman’s (2011) work,4 and 
α3 was assumed to be the same AI coefficient (0.635) found in Lee and Waddell’s (2010) paper, 
based on a logsum (for work trips) to all destination zones.

μ1,	μ2,	μ3 serve as the three choice-levels’ utility scaling parameters for the mode, destination, 
and location choices. These are the inverse of the logit model’s inclusive value coefficients, as 
defined in Ben-Akiva and Lerman (1985), and they serve as coefficients in the utility expression. 
Consistent with McFadden’s random-utility theory, the scale parameters are usually assumed to 
fall from the lowest to the highest level nest (see, e.g., Kockelman and Lemp 20115). Here, scale 
parameters of 1.2 (μ1) in the lowest, 1.1 (μ2) in the middle nest, and 1.0 (μ3) in the upper level nest 
were assumed. These are falling (from the lowest to the highest level nest), and the inverse of each 
lies between 0 and 1, consistent with RUM assumptions (Ben-Akiva and Lerman 1985).

Estimates of consumer surplus changes (ΔCS) for each scenario (as compared with the starting 
or base case setting) were computed as well. Normalized logsums of systematic utilities are used 
here as the basis for estimating those welfare changes, as follows:

(10)                     

Here, CS can be measured between any two scenarios, but this paper looks primarily at the 
change in consumer surplus as measured in reference to the base scenario. Here, αn represents the 
marginal utility of income for person n, assumed to be the reciprocal of α1’s absolute value, so all αn 

are set to $10,000/0.0357 = $280,112. 

NUMERICAL EXAMPLES

In order to fully appreciate the consumer surplus changes (home buyer welfare effects) as a result 
of the changes in access, home price, and other factors, the NL model was applied to a variety of 
scenarios, which vary.  For example, the generalized costs of either mode, auto’s operating cost 
and travel time, home prices, and VOTT. The travel time and cost data used in this example come 
from TAZ-based skim files6 of Austin, Texas’ Capital Area Metropolitan Planning Organization 
(CAMPO) for a three-county network in the year 2000. Sixty (60) of the original 1,074 TAZs 
were strategically selected as a representative sample of the larger region’s location alternatives. 
Therefore, the AI of one zone is an average access from its zone to the other 1,073 zones and can be 
calculated using Eq (7).
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Table 1 shows the types and distribution of these 60 zones, which reflect four types of land use: 
rural, suburban, urban, and central business district (CBD) zones (according to CAMPO definitions). 
Here, CBD zones are assumed to have the highest home prices and rural zones the lowest, due to 
land-rent increases typical of more central/accessible locations. For simplicity, the home prices are 
assumed to be $200,000, $300,000, $600,000, and $1,000,000 in the rural, suburban, urban, and 
CBD zones (not far from Austin’s actual home prices.) Similarly, home sizes are assumed to fall 
with increased density, with 3,000 ft2, 2,500 ft2, 2,000 ft2, and 1,500 ft2 serving as the interior/built 
space for rural, suburban, urban, and CBD homes. Accessibility metrics are much harder to guess 
at, and were estimated as logsums using actual travel times and travel costs between the 60 zones 
(travel costs referred to here as “fares,” for the transit alternative, and reflecting tolls and vehicle 
operating costs in the case of the automobile7). Table 2 shows the main variables and parameters 
used in the example, and Table 3 shows the base scenario for the 60 zones. 

Table 1:  Austin’s TAZ Sample
Rural Suburban Urban CBD Totals

County

Hays 4 4 2 0 10

Travis 9 15 12 2 38

Williamson 4 5 3 0 12

Totals 17 24 17 2 60

Under this base scenario, probabilities of location choices are calculated via Equation 8, with 
the rural and suburban zones’ share being larger due to their relatively higher utilities. The shares of 
residents in the four types of zones are 0.480, 0.400, 0.117, and 0.0026 (for rural, suburban, urban, 
and CBD in that order). The model also shows that the probability of a household choosing a rural 
or suburban zone increases greatly with higher AIs. For example, rural zone 4 and suburban zone 
37 have relatively high AIs (0.906 and 1.902) within their zone type, and the probabilities of these 
two zones being chosen (0.0499 and 0.0328) are relatively large; but for urban zones, especially the 
CBD zones, even zones with very high AIs are unlikely to be chosen (e.g., zone 60 has the highest 
accessibility [2.934], but the probability of a household choosing this zone is very small [0.0013]). 
This indicates that the relative desirability of rural and suburban zones is more sensitive to AIs. In 
other words, network changes that improve or worsen the accessibility of rural and suburban zones 
have great impacts on households’ decisions to locate in these zones, while the choice to locate in 
urban and CBD zones is less sensitive to such accessibility changes.



75

JTRF Volume 55 No. 1, Spring 2016

Table 2: Variables and Parameters Used 
Variable Used Variable Description Parameter Values
Home price (P) Average home price (10,000$) α1 -0.0357

Square footage (SF) Average interior square footage (1,000ft2) α2 1.39
Accessibility

(AI)
Logsums of mode-destination analysis based 

on travel time and travel cost α3 0.635

Scale parameter
(µ)

Scale parameter for the lowest level µ1 1.2
Scale parameter for the median level µ2 1.1
Scale parameter for the highest level µ3 1.0

Alternative specific 
constants (ASC)

Alternative specific constants for Auto mode 0.0
Alternative specific constants for Transit mode -1.1

VOTT Value of the travel time ($/h) $12 per hr
Marginal utility of 

income (αn)
Marginal utility of income for person n αn $280,110

Several other scenarios are also explored to understand effects on home buyer welfare levels. 
Scenario 1 examines the effect of transit’s generalized travel costs by increasing and decreasing 
GCij values by 20%, 40%, and 60%. Scenario 2 examines travel time cost effects, while Scenarios 
3 and 4 further explore changes in the auto mode, by varying its operations costs and travel times, 
respectively. Finally, Scenario 5 examines the impact of changing home prices on home buyers’ 
benefits. 

Figure 2 shows the corresponding changes in AIs and the changing probabilities with the 
changes in inputs in these scenarios. Table 4 shows the shares of households selecting each of the 
four zone types under different scenarios. Finally, Table 5 compares the home buyer welfare across 
scenarios. It shows how the generalized cost of automobile travel and home prices play key roles in 
home buyer welfare gains and losses.

When varying the generalized costs of transit, there are almost no changes or very slight 
changes in each location’s AI and probability of being chosen. For example, when all GCij values 
are increased 40%, total probabilities of location choices in CBD and urban zones have no change 
on average, while those in rural and suburban zones only rose an average of 0.0001 and -0.0001. 
Home buyer welfare change, as estimated using the logsum difference between the Base scenario 
and Scenario 1, is very small. When all GCij values are increased 20%, 40%, and 60%, the estimated 
average-mover welfare changes are computed to be -$30.8, -$42.6, and -$47.7 (as shown in Table 
5). However, when all GCij values are decreased 20%, 40%, and 60%, the corresponding welfare 
gains are estimated to be $101, $592, and $4,870. The model implies that decreasing transit fares 
impact home buyer benefits more significantly than increasing fares.

Changes in generalized costs of auto affect home locations’ AI and probability more significantly, 
as in Figure 2(a). Larger spacing between the AI lines implies that AI is quite sensitive to auto’s 
generalized cost. When all GCij values are increased by 40%, average location choice probabilities 
in the rural and CBD zones rise by 0.0210 and 0.0002 (from Table 4: 0.5009-0.4800 = 0.0210 
and 0.0028-0.0026 = 0.0002), while those in suburban and urban zones drop an average of 0.0197 
and 0.0015 (from Table 4: 0.4004-0.3807 = 0.0197 and 0.1171-0.1156 = 0.0015). This may appear 
inconsistent with intuition: one typically expects higher generalized auto costs to make more central 
housing locations relatively more accessible and, therefore, relatively more desirable. However, 
from Equations (4), (5), (8), and (9), one notices how, as GCij increases, the AI of each zone 
decreases, making AI differences between zones smaller, so an overall shift toward less accessible 
zones can result. 
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Welfare gains and losses (∆CS) estimated via logsum differences in the base scenario and 
scenario 2 are quite large: when all GCij values are increased 20%, 40%, and 60%, the estimated 
user welfare losses are -$55,946, -$98,858, and -$132,160, as shown in Table 5. When all GCij 
values fall 20%, 40%, and 60%, the estimated welfare gains are $74,127, $172,506, and $319,787. 
As in the case of transit, such results imply that reductions in automobile travel costs impact home 
buyer welfare more significantly than the same percentage increase in auto travel costs. The above 
welfare gains and losses are calculated for home buyers with a $70,000 annual income and 2.4 
person household size. For home buyers with $45,000 annual income and four-person household 
size, the estimated user welfare changes are -$36,299, -$64,083, and -$85,581 when all GCij values 
are increased 20%, 40%, and 60%; they are $48,151, $113,699, and $207,662 when all GCij values 
fall by 20%, 40%, and 60%. A $15-per-hour VOTT was also tested, resulting in higher accessibility 
indices (than with the $12-per-hour VOTT used above), but estimated house buyer benefits are 
smaller than before (i.e., as compared with those shown in Table 5).

Table 4:  Shares of Home Location for Four Types of Zones Following Changes in Variables
60% 40% 20% -20% -40% -60%

Transit 
GC

Rural 0.4800 0.4800 0.4800 0.4798 0.4792 0.4754
Suburban 0.4003 0.4003 0.4003 0.4005 0.4009 0.4039

Urban 0.1171 0.1171 0.1171 0.1172 0.1173 0.1181
CBD 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026

Auto 
GC

Rural 0.5138 0.5009 0.4890 0.4764 0.4824 0.5038
Suburban 0.3708 0.3807 0.3910 0.4070 0.4081 0.3987

Urban 0.1125 0.1156 0.1173 0.1142 0.1076 0.0959
CBD 0.0028 0.0028 0.0027 0.0023 0.0020 0.0016

Auto 
OC

Rural 0.5030 0.4948 0.4869 0.4744 0.4713 0.4720
Suburban 0.3804 0.3870 0.3938 0.4064 0.4113 0.4140

Urban 0.1138 0.1155 0.1167 0.1167 0.1151 0.1119
CBD 0.0027 0.0027 0.0026 0.0024 0.0023 0.0021

Auto 
TT

Rural 0.4857 0.4829 0.4810 0.4801 0.4815 0.4844
Suburban 0.3920 0.3952 0.3980 0.4020 0.4029 0.4029

Urban 0.1196 0.1192 0.1184 0.1154 0.1132 0.1105
CBD 0.0028 0.0027 0.0026 0.0025 0.0023 0.0022

Home 
price

Rural 0.5625 0.5368 0.5094 0.4484 0.4148 0.3791
Suburban 0.3787 0.3882 0.3956 0.4017 0.3991 0.3918

Urban 0.0583 0.0740 0.0934 0.1456 0.1792 0.2179
CBD 0.0005 0.0009 0.0015 0.0042 0.0069 0.0112

Base scenario Rural: 0.4799; Suburban: 0.4004; Urban: 0.1171; CBD: 0.0026
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Figure 2: Changes in AI and Zone Choice Probabilities Following Changes in Auto’s Total 
(Generalized) Costs (a), in Auto’s Operating Costs (b), and in Auto’s Travel Times (c)

Note: X-axis denotes the 60 zones (potential home locations)
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Scenarios 3 and 4 are the detailed analyses of changes in operation cost and travel time inputs 
of the auto mode. Figures 2(b) and 2(c) describe the AIs and probabilities of each location being 
chosen under these scenarios. As seen in these figures, line shapes are very similar to those in 
Figure 2(a), but the spacing between lines is smaller, implying that AI and the probability of a 
location being chosen are less sensitive to changes in vehicle operation costs and travel times than 
to changes in overall generalized costs. In Scenario 3, for example, when all operation cost values 
are increased 40%, the total probabilities of location choices in rural and CBD zones rise by 0.0149 
and 0.0001(from Table 4: 0.4948-0.4799 = 0.0149 and 0.0027-0.0026 = 0.0001), on average, while 
those in suburban and urban zones drop an average of 0.0134 and 0.0016 (from Table 4: 0.4004-
0.387 = 0.0134 and 0.1171-0.1155 = 0.0016); when all operation cost values fall by 40%, the total 
probability of choosing a suburban zone rises by 0.0109 (from Table 4: 0.4113-0.4004 = 0.0109), 
while choice probabilities of each rural, urban, and CBD zones drop an average of 0.0086, 0.0020, 
and 0.0003 (from Table 4: 0.4799-0.4713 = 0.0086, 0.1171-0.1151 = 0.0020 and 0.0026-0.0023 = 
0.0003). As discussed previously, AIs of rural and suburban zones are more sensitive to the road 
networks changes. Scenario 4 offers almost the same trend as shown in Scenario 3. In comparing 
results of Scenarios 3 and 4, one can see how lower vehicle operations costs may provide more 
benefits to new home buyers than reduced travel time when they are changed by the same proportion 
or percentage. For example, the estimated average welfare effect is $99,940 when all operating costs 
fall 40%, versus $51,546 when all travel times fall 40%. Table 5 shows these numbers in detail.

Scenario 5 explores the effect of home price on people’s home location choices and welfare. 
As displayed in Figure 3, the shares of location choice in suburban zones are less sensitive to home 
price shifts (as compared with all other zone types). For example, zones 10, 37, 48, and 60 exist 
in rural, suburban, urban, and CBD locations, respectively. When all home price values increase 
40%, the shares of these four representative zones shift by 0.0037, -0.0010, -0.0085, and -0.0008, 
respectively, compared with their original probabilities, shown in Table 3: 0.0312, 0.0328, 0.0230, 
and 0.0013). The corresponding estimated welfare losses are -$56,678, -$111,383, and -$164,438 
when all home prices increase 20%, 40%, and 60%, and welfare gains are $59,036, $120,885, and 
$186,079 when home price fall 20%, 40%, and 60. When one changes VOTT from $12 to $15 per 
hour, the benefits one observes following house price reductions (in Table 5, with superscripts) are 
smaller than before, while losses from house price increases are somewhat greater than before. It 
seems home buyer benefits are impacted slightly more when home prices fall than when they rise by 
the same amount (in dollars or percentage terms).

Table 5: Welfare Effects of Changing Travel Costs, Times, and Home Prices 
 (Income = $70,000, Household size = 2.4 persons, VOTT = $12/hr)

Changes
Scenarios +60% +40% +20% -20% -40% -60%

Transit GC -$47.7 -$42.6 -$30.8 $101.1 $591.5 $4,870
Auto GC -$132,160 -$98,858 -$55,946 $74,127 $172,506 $319,787
Auto OC -$94,290 -$68,089 -$37,063 $44,808 $99,940 $169,692
Auto TT -$61,040 -$42,585 -$22,303 $24,537 $51,546 $81,299
Home Price -$164,438 -$111,383 -$56,678 $59,036 $120,885 $186,079
Auto GC1 -$80,661 -$60847 -$34,755 $46,993 $112,094 $206,804
Home Price1 -$174,640 -$124,185 -$72,106 $38,989 $99,511 $176,764

1 These results presume VOTT = $15/hr 
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Figure 3:   Changes in Zone Choice Probabilities Following Home-Price Changes

CONCLUSIONS 

An understanding of residential location choice provides a foundation to explore the relationship 
between land use and transportation, which leads to more accurate travel demand models. Previous 
research on household location choice usually focuses on the factors affecting the household 
buyer’s location choice decision, with accessibility generally accepted as a principal determinant 
of residential location selection. In this paper, a three-layer NL structure on house location choice 
is proposed and logsum differences are used to estimate home buyers’ welfare changes as a result 
of various transportation and housing input changes. The systematic utility of a residence is 
considered as a function of home price, home size, and home location zone’s accessibility. This 
paper develops several scenarios to examine how transportation and housing price factors affect 
house location choice behavior and household welfare, with an emphasis on new buyers (rather than 
existing owners, who are also affected by personal-wealth changes, when the values of their existing 
properties shift, following AI changes). 

Home buyer (or residential locator) welfare estimated via logsum differences are estimated to 
be very small due to changes in the generalized cost of transit; and location choice probabilities 
remain very stable when raising or lowering all transit travel time and/or cost values. In most U.S. 
settings and many other regions of the world, access costs via automobile are very important for 
home location choice. Decreasing travel costs and/or travel times have a more significant impact 
on home buyer welfare than increasing them; and the higher the AIs, the larger the buyers’ choice 
probabilities in most rural and suburban areas. It is also implied that in urban and CBD areas, home 
buyers usually pay more attention to home price or home size. The relative significance of home 
price changes on home-buyer welfare is apparent, as compared with similar (scaled) shifts in the 
values of other attributes: new locators benefit more when home prices fall by the same amount, 
both in dollar terms and percentage terms.

These findings are meaningful for many stakeholders when anticipating the economic impacts 
of evolving transportation systems in the face of new investments, rising travel demands, distance-
based tolls, self-driving vehicles, and other changes. Land values and home prices are a major 
economic policy concern for growing and popular regions, as rents rise and welfare can fall, even if 
transportation systems are being improved. The London region, San Francisco Bay Area, Auckland, 
and even Austin, Texas, face serious social and economic issues relating to housing and transport. 
This paper provides a method for and realistic examples of a holistic view that educates planners, 
economics, engineers, and policymakers.
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Of course, the analysis pursued here illustrates only a limited number of idealized scenarios 
under a nested logit model structure, and focuses on home buyers rather than renters. Many other 
investigative opportunities and scenario extensions are feasible, which may highlight other key 
factors for regional welfare analysis following changes in the transportation and/or land use systems. 
For example, one could examine the effects of changes in zone attractiveness, model parameters, and 
various other inputs, simultaneously or independently. One could use Bina et al.’s (2006) parameters 
for renters’ location choices and parameters for rent variations across locations and dwelling types 
to anticipate welfare impacts on this other very important class of locators. User heterogeneity is 
also important to explore in more depth, since every household differs (in its demographic attributes, 
income, housing preference function, and values of travel time, for example). Moreover, uncertainty 
exists in all zones (and for all model parameters, as well as the model specification itself), with 
spatial autocorrelation in missing variables; and there are significant information-limitation issues 
for many movers (especially those new to a region) when evaluating a region’s many location 
options. Thus, this topic area remains ripe for future investigation.

A variety of other, and ideally more realistic, changes to the transportation system would be 
very useful to explore here to further describe the changes in AIs, choices, and welfare levels. 
The possibilities are limitless, and the big changes simulated here, across the zone system, may 
provide upper bounds on the magnitudes of experience one might expect, which can be useful for 
evaluating shocks like major recessions (when travel demands fall substantially) or expansionary 
periods, and changes in transport technology (e.g., self-driving cars lowering perceived travel costs 
dramatically). The future is always uncertain, but it is wise to anticipate land price and welfare 
effects well in advance to shape policies and practices that enhance local and regional communities.
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Endnotes

1. Logsums are the natural log of summations of exponential functions of the systematic utilities 
across alternatives, under a logit-choice-model specification. Logsum differences quantify 
changes in expected maximum utilities and thus consumer surplus before and after the change.

2. Bina and Kockelman (2006, 2009) explored the mean rank of importance of housing and 
location attributes from two mover segments: home buyers and apartment renters. They found 
that home price (or apartment rent), travel time (to work), and access to major freeways are the 
most important attributes for home buyers and apartment buyers - among almost 20 attributes. 
Home size (including number of bedrooms and lot size) is also top-ranked by most home buyers.

3. The rule-of-half method (RoH) is a traditional method for calculating consumer surplus in 
transport economics. It assumes that the consumer demand curve is linear with respect to 
generalized costs, at least between original and new demand values. When generalized cost 
changes from GC0 to GC1, travel demand (in the form of person-trips) will change from T0 to 
T1. The change in consumer surplus (∆CS) can be computed as follows: 
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4. Zhou and Kockelman (2011) proposed a dwelling unit and location choice model for Austin’s 
households based on a survey of Austin movers in 2005, and estimated coefficients on home 
price-to-income ratio and SF (square feet)-per-household-member variables to be -0.249 and 
+3.34. According to “City of Austin Community Inventory Report,” from 2000 to 2007, the 
average median household annual income is between $60,000 to $70,000, household size is 
between 2.2 to 2.4 (and shows a declining trend). Thus, in this paper, an average household 
income $70,000 and an average household size 2.4 are assumed (usually, the new home buyer 
households are wealthier and bigger-size than average households in Austin. In Bina and 
Kockelman (2009), the surveyed new home buyer’s average income was $93,256, and average 
household size was 2.27. Here, with the home price (P) and SF instead of home price-to-income 
ratio and SF-per-household-member, the values of α1 and α2 can be estimated as α1 = -0.249/7= 
-0.0357 and α2 = 3.34/2.4 = 1.39.

5. Kockelman and Lemp (2011) relied on a four-layer (destination, mode, time of day, and route) 
NL model, with scale parameters (µ1, µ2, µ3, µ4,) from the lowest-level nest to the highest-level 
nest assumed to be 1.8, 1.6, 1.4, and 1.2, to be consistent with random utility maximization 
theory (Ben-Akiva and Lerman 1985).

6. Skim files are optimal/shortest travel times and costs between all origin-destination pairs, by 
mode, following a loading of demand onto the network, and solving for a user equilibrium, 
where no one can improve his/her generalized cost of travel.

7. According to AAA (2013), the average cost of driving a medium sedan 15,000 miles a year was 
$0.61 per mile in 2013. Here, a value of $0.60 per mile is used to estimate the COSTldm value 
shown in Equation 4. 

References

AAA “Your Driving Costs: How Much Are You Really Paying to Drive?” AAA Association 
Communication, Heathrow, FL, 2013. Available at http://newsroom.aaa.com/wp-content/
uploads/2013/04/YourDrivingCosts2013.pdf.

Allen, G. “Highway Noise, Noise Mitigation, and Residential Property Values.” Transportation 
Research Record 812, (1981): 21-27.

Alonso, W. Location and Land Use: Toward a General Theory of Land Rent. Harvard University 
Press, Cambridge, MA, 1964.

Bajic, V. “The Effects of a New Subway Line on Housing Prices in Metropolitan Toronto.” Urban 
Studies 20, (1983): 149-158.

Ben-Akiva, M., and S. Lerman. Discrete Choice Analysis: Theory and Application to Travel 
Demand. MIT Press, 1985.

Ben-Akiva, M., and J.L. Bowman: “Integration of an Activity-based Model System and a Residential 
Location Model.” Urban Studies 35, (1998): 1131-1153.

Bina, M., and K.M. Kockelman. “Location Choice vis-à-vis Transportation:  The Case of Recent 
Homebuyers.” The Expanding Sphere of Travel Behaviour Research 18, (2009): 597-619.

Bina, M., V. Warburg, and K.M.  Kockelman “Location Choice vis-à-vis Transportation: The Case 
of Apartment Dwellers.” Transportation Research Record (2006): 93-102.



83

JTRF Volume 55 No. 1, Spring 2016

Castiglione, J. J., Freedman and W. Davidson. “Application of a Tour-based Microsimulation Model 
to a Major Transit Investment.” San Francisco County Transportation Authority and PB Consult, 
San Francisco, California, 2003. 

Dang, Y., W. Zhang, and W. Wu. “Residents Housing Preferences and Consuming Behaviors in 
a Transitional Economy: New Evidence from Beijing, China.” Progress in Geography 30(10), 
(2011):1203-1209.

EXPEDITE Consortium. EXPEDITE Final Publishable Report. Report for European Commission, 
DGTREN, RAND Europe, Leiden, 2002.

FHWA. Work Zone Road User Costs - Concepts and Applications. US Department of Transportation, 
Federal Highway Administration. Available at
http://ops.fhwa.dot.gov/wz/resources/publications/fhwahop12005/sec2.htm (2015).

Geurs, K., B. Zondag, G. de Jong de, and M. de Bok. “Accessibility Appraisal of Land-Use / 
Transport Policy Strategies: More Than Just Adding up Travel-Time Savings.”  Transportation 
Research Part D, (2010): 382-393.

Habib, K.M., and K.M. Kockelman, “Modeling the Choice of Residential Location and Home Type: 
Recent Movers in Austin, Texas.” Proceedings of the 87th Annual Meeting of the Transportation 
Research Board, (2008).

Hollingworth, B.J., and E.J. Miller. “Retrospective Interviews and its Application in Study of 
Residential Mobility.” Transportation Research Record 1551, (1996): 74-81.

Hunt J.D., J.D.P. McMillan, and J.E. Abraham. “Stated Preference Investigation of Influences on 
Attractiveness of Residential Locations.” Transportation Research Record 1466, (1994): 79–87.

Jong, G. de, M., A. Pieters , I. Daly, E. Graafland, Kroes, and C. Koopmans. “Using the Logsum as 
an Evaluation Measure: Literature and Case Study.”  Prepared for AVV Transport Research Centre. 
RAND Europe, 2005.

Kalmanje, S., and K.M. Kockelman, “Credit-Based Congestion Pricing: Travel, Land Value and 
Welfare Impacts,” Transportation Research Record 1864, (2004): 45-53.

Kockelman, K.M., and J.D. Lemp “Anticipating New-Highway Impacts: Opportunities for Welfare 
Analysis and Credit-Based Congestion Pricing. Transportation Research Part A 45 (8), (2011): 825-
838.

Lee, B.H.Y, P. Waddell, L. Wang, and R.M. Pendyala. “Reexamining the Influence of Work and 
Nonwork Accessibility on Residential Location Choices with a Micro Analytic Framework.” 
Environment and Planning A 42, (2010): 913-930.

Lee, B.H.Y., and P. Waddell “Residential Mobility and Location Choice: A Nested Logit Model with 
Sampling of Alternatives.” Transportation 37(4), (2010): 587-601.

McFadden, D. “Modeling the Choice of Residential Location.” A. Karlqvist, L. Lundqvist, F. 
Snickars, and J. Weibull, (eds). Spatial Interaction Theory and Residential Location. Amsterdam, 
North-Holland, Amsterdam, (1978).



84

Home Location Options

McFadden, D. “Econometric Models of Probabilistic Choice.” C. Manski, and D. McFadden, (eds). 
Structural Analysis of Discrete Data: With Econometric Applications. Cambridge, Massachusetts, 
MIT Press (1981).

Mohring, H. “Land Values and the Measurement of Highway Benefits.” Journal of Political 
Economy 49, (1961): 236-249. 

Nelson, J.P. “Highway Noise and Property Values: A Survey of Recent Evidence.” Journal of 
Transport Economics and Policy 16(2), (1982): 117-38.

Odeck, J., J. Rekdal, and T.N. Hamre “The Socio-Economic Benefits of Moving from Cordon 
Toll to Congestion Pricing: The Case of Oslo.” Proceedings of the 82th Annual Meeting of the 
Transportation Research Board, Washington D.C., (2003). 

Ommeren, J.V., P. Roedveld, and P. Nijkamp. “Job Moving, Residential Moving and Commuting: A 
Search Perspective.” Journal of Urban Economics 46, (1999): 230-253. 

Pinto, S.M. “Residential Choice, Mobility and the Labour Market.” Journal of Urban Economics 
51, (2002): 469-496.

Rossi, P. Why Families Move. McMillan, New York, 1955.

Sermons, M.W., and F.S. Koppelman. “Representing the Differences Between Female and Male 
Commute Behavior in Residential Location Choice Models.” Journal of Transport Geography 9 
(2), (2001): 101–110. 

Srour, I.M., K.M. Kockelman, and T.P. Dunn. “Accessibility Indices Connection to Residential 
Land Prices and Location Choices.” Transportation Research Record 1805, (2002): 25-34.

Ten Siethoff, B., and K. Kockelman, “Property Values and Highway Expansions: An Investigation 
of Timing, Size, Location, and Use Effects.” Transportation Research Record 1812, (2002): 191-20.

Tu, Y., and J. Goldfinch “A Two-Stage Housing Choice Forecasting Model.” Urban Studies 33 (3), 
(1996): 517–537.

US Department of Transportation, Federal Highway Administration Case Study: Sacramento, 
California. Methodology	Calculation	of	User	Benefits, USDOT, (2004).

Voith, R. “Transportation, Sorting, and Housing Values.” AREUEA Journal 19 (2), (1991): 117-137.

Yang, J. “Transportation Implications of Land Development in a Transitional Economy: Evidence 
from Housing Relocation in Beijing.” Transportation Research Record 1954, (2006): 7-14.

Zhang, W., and K.M. Kockelman. “Modeling Cities with Congestion and Agglomeration 
Externalities: The Efficiency of Congestion Tolls, Labor Subsidies, and Urban Growth Boundaries.” 
Under final review for publication in Journal of Urban Economics, (2015). http://www.ce.utexas.
edu/prof/kockelman/public_html/trb14ugbsvstollingrents.pdf 

Zhou, B., and K.M. Kockelman. “Microsimulation of Residential Land Development and Household 
Location Choices: Bidding for Land in Austin, Texas.” Transportation Research Record 2077, 
(2008a): 106-112.



85

JTRF Volume 55 No. 1, Spring 2016

Zhou, B., and K.M. Kockelman. “Self-Selection in Home Choice: Use of Treatment Effects in 
Evaluating the Relationship Between the Built Environment and Travel Behavior.” Transportation 
Research Record 2077, (2008b): 54–61.

Zhou, B., and K.M. Kockelman. “Neighborhood Impacts on Land Use Change: a Multinomial Logit 
Model of Spatial Relationships.” Annals of Regional Science 42(2), (2008c): 321-340.

Zhou, B., and K.M. Kockelman. “Land Use Change Through Microsimulation of Market Dynamics: 
An Agent-based Model of Land Development and Locator Bidding.” Transportation Research 
Record 2255, (2011): 125-136.

Zondag, B., and M. Pieters. “Influence of Accessibility on Residential Location Choice.” 
Transportation Research Record 1902, (2006): 63-70.

 
Shuhong Ma	is	an	associate	professor	in	the	Traffic	Engineering	Department	School	of	Highways	
at Chang’an University. Ma’s main research interests are transportation planning and policy-
making, system evaluation, and traveler behavior in response to pricing and policy. She has been, 
and continues to be, involved in many projects in this area and has published extensively in this 
area of research. Ma’s current research focuses on the relationship between accessibility and public 
transit system in Xi’an City. Prior to teaching and researching at Chang’an University, she obtained 
her BS in 1999 and master’s in 2002 in transportation engineering from Chang’an University. In 
2008, she received her doctoral degree. 

Kara Kockelman is a registered professional engineer and holds a PhD, MS, and BS in civil 
engineering, a master’s of city planning, and a minor in economics from the University of California 
at Berkeley. Dr. Kockelman is primary and co-author of over 140 journal articles (and one book) 
across a variety of subjects, nearly all of which involve transportation-related data analysis. 
Her primary research interests include planning for shared and autonomous vehicle systems, the 
statistical modeling of urban systems (including models of travel behavior, trade, and location 
choice), energy and climate issues (vis-à-vis transport and land use decisions), the economic 
impacts of transport policy, and crash occurrence and consequences.



86



87

JTRF Volume 55 No. 1, Spring 2016

by Mintesnot Woldeamanuel and Craig Olwert

A multimodality index (MI) is developed to evaluate the accessibility and convenience of transit 
use by investigating the connectivity of a Bus Rapid Transit (BRT) with other modes of travel. 
Better connected stations increase transit system ridership, resulting in environmental and social 
equity gains. The integration of the Orange Line BRT system in Los Angeles with other travel 
modes, including bicycles, pedestrians, regular buses, and private automobiles, was analyzed 
using	field	observations	and	LA	Metro	data	to	create	a	multimodality	index	(MI).	While	multimodal	
connectivity of the Orange Line BRT system varies across stations, a positive relationship exists 
between ridership and the MI, indicating that the MI is a reliable predictor of transit ridership and 
a useful tool for transit planning.  

INTRODUCTION

Urban residents frequently utilize multiple transportation modes to travel across the city, making 
their trips multimodal (Keshkamat et al. 2009; Liu 2011). Multimodal transportation is the use of two 
or more modes to move people or goods from an origin to a destination (DeWitt and Clinger 2000); 
and a multimodal transportation system is a system that elegantly integrates multiple travel modes 
across an urbanized area (Bielli et al. 2006). Public transit, especially Bus Rapid Transit (BRT), is 
an important part of a multimodal system. Dill et al. (2013) found that BRT ridership depends on 
several station-level factors, including multimodal connectivity. BRT is considered an ideal form of 
public transportation because its flexibility, affordability, and accessibility provide overall positive 
environmental and social benefits (Cain et al. 2007; Hidalgo and Carrigan 2010; Vincent and Jerram 
2006; Wright and Fulton 2005; Cervero 2013). So, increasing multimodal connectivity to BRT 
increases accessibility and reduces traffic congestion, roadway costs, and energy consumption.

Rickert (2010), Duarte and Rojas (2012), and Dill et al. (2013) found that the connectivity of a 
BRT with walking, cycling, automobile, and other forms of public transit increases ridership. Higher 
ridership occurs because patrons know they have a convenient alternative transportation mode to 
complete their first and last miles of their overall trip. When stations and areas surrounding the 
stations are designed to integrate alternative travel modes, BRT ridership increases and multimodal 
patrons have more efficient trips. In 2014, the Institute for Transportation and Development Policy’s 
(ITDP) BRT Standard (2014) identified only four qualified BRT systems: Cleveland, Ohio; Los 
Angeles Metro Orange Line; Eugene, Oregon; and San Bernardino, California (operational as of 
April 2014 and not assessed yet). This study will determine the Los Angeles Metro Orange Line 
station’s multimodal connectivity and the effects on ridership.

The Metro Orange Line serves passengers in Los Angeles’ suburban San Fernando Valley. 
Orange Line users can access stations by transferring from commuter rail, subway, and regular 
bus; biking; walking; driving individual automobiles using park-n-ride facilities, and carpooling 
and taxis using kiss-n-ride (drop off locations where cars can drop off and pick up passengers). 
The terminus stations have access to larger mass transit systems. At the North Hollywood station, 
the Orange Line connects to the Red Line subway, which travels through famous population and 
employment centers including Hollywood, Koreatown, and Downtown Los Angeles. The Orange 
Line’s northwest terminus, the Chatsworth Station, connects passengers to Metrolink (regional) and 
Amtrak (national) rail service.  The Orange Line provides a practical alternative to the automobile, 

The Multimodal Connectivity at Bus Rapid Transit 
(BRT) Stations and the Impact on Ridership
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the main mode of transportation in the San Fernando Valley for work, school, shopping, and 
entertainment trips. The Orange Line began service in October 2005 and was extended from Warner 
Center to Chatsworth in June 2012.  It has quickly exceeded the initial planned ridership levels. 
Exploring the Orange Line’s ridership and multimodal connectivity will allow transit planners to 
better understand how to make successful BRT systems.

Thus, the infrastructure at and around the Orange Line stations will be analyzed to determine 
if multimodal connectivity impacts ridership. Pedestrian, cyclist, transit, car, and taxi connections 
will be examined at each station to determine if ridership is higher at stations with better multimodal 
connectivity. 

Figure 1: The BRT Orange Line in San Fernando Valley 

LITERATURE REVIEW

Since World War II, transportation planning in the United States focused on maximizing the 
efficiency and speed of one mode of transportation (usually the automobile) rather than evaluating 
and increasing the efficiency of a user’s multimodal trip. Building highways was the main priority of 
transportation legislation until the passage of the Intermodal Surface Transportation Efficiency Act 
of 1991 (ISTEA) shifted the focus to multimodal trips (Dilger 1992).  In this new era, comprehensive 
assessments of different travel modes’ connectivity were used by metropolitan agencies to develop 
sustainable transportation systems and to influence local and regional transportation and land use 
plans (Strate et al. 1997). 

Since ISTEA, transportation planning research and transportation modeling techniques account 
for a wider range of travel options, including walking, biking, carpool, and public transit and evaluate 
the multimodal system’s effect on emissions and land use. This new paradigm recognizes that the 
ultimate goal is accessibility:  people’s overall ability to quickly reach desired services and activities 
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(Litman 2014). Thus, a multimodal transportation system increases the options provided for users to 
best meet their needs and preferences (Mahrous 2012; Talbott 2011; Cervero and Kockelman 1997; 
Polat 2012; Nobis 2006; Godefrooij et al. 2009). 

While research has focused on the multimodal network at a system level (Bielli et al. 2006; 
Hochmair 2008), multimodal access at stations has also been studied (Kerman et. al, 2014; Iseki 
et al. 2007). Kerman et al. (2014) found that transit station design can increase connectivity for 
pedestrians, bikers, and transit and automobile users. Increased connectivity, with more direct 
walking routes and better pedestrian facilities, increases the likelihood of transit being incorporated 
into a multimodal trip (Dill 2004; Moudon et al. 1997; Frank et al. 2005). Dill (2004) identified 
sidewalk coverage, average block size, and intersection density as three indicators of connectivity. 
The recommended target for sidewalk coverage, the percent of streets with sidewalks on both sides 
of the streets within one-half-mile of a station, is 67%. Smaller block sizes increase the station 
permeability by increasing pedestrian route choices to access transit, with a recommended size 
of four acres or less. Higher intersection density, the number of four-way intersections per acre, 
increases the likelihood for more walking routes and increases the ability of a user to take the most 
direct route (Dill 2004).

Public transit and bicycles are highly compatible modes of transportation (Nelson and Nygaard 
2009), so facilitating bicycle access to transit facilities can increase transit ridership. Providing direct, 
safe routes to stations with dedicated bike lanes and allowing bikes aboard BRT vehicles increases 
ridership, particularly for routes that carry many riders who travel long distances and collect riders 
from lower density neighborhoods. Nelson and Nygaard (2009) argue that bike storage at stations 
and accommodating bicycles aboard BRT vehicles promotes multimodal corridor ridership. Olwert 
et al. (2015) found that when the Metro Orange Line evening service was increased, stranded cyclists 
decreased and bicycle ridership increased.

Besides walking and bicycling, other multimodal users arrive by transit and automobile. Evans 
(2004) found when wait times for BRT customers transferring from local feeder service exceeded 
7.5 minutes, ridership decreased.  However, when timing of the transfers was optimized and walking 
connections were minimized, BRT ridership increased (Evans 2004).  BRT ridership also increases 
when more park-n-ride spaces are added.  Levinson and Weant (2000) found that ridership increases 
by 0.74 to 0.77 riders per added parking space with 0.11 to 0.60 of them being new riders.

Multimodal accessibility has been evaluated in several ways:  evaluating the immediate area to 
a transit station, considering the overall transportation system connectivity, and finally, looking at 
station specific attributes.  By looking at the area immediate to a station, researchers have found ways 
to make recommendations to increase multimodal accessibility at the stations by improvements in 
an area surrounding the station. Iseki et al. (2007) developed an evaluation tool to assess the quality 
of transit transfer facilities by focusing on items that improve a passenger’s experience:  minimal 
transfer time and distances, and maximum convenience, comfort, safety, and security.  Guttenplan 
and Reynolds (2012) analyzed the level of service (LOS) for connecting modes (automobile, transit, 
bicycle, and pedestrian) based on the urban street design and operations around the transit stations. 
The resulting report card evaluates how well streets meet the needs of its different users. 

Frank (2008) applied the traditional shortest path algorithms to create integration between 
different travel modes across the transportation system. Scheurer and Curtis (2008) used spatial 
network analysis of a multimodal urban transport systems tool (SNAMUTS) to identify and visualize 
strengths and weaknesses of geographical coverage, network connectivity, competitive speed and 
service levels to understand the multimodal connectivity of a transportation system. Waddell and 
Nourzad (2002) used regional accessibility of a neighborhood to assess the multimodal connectivity 
of the overall transportation system.

Although a system level multimodality analysis is the focus of the above-mentioned studies, 
some research focuses on station-level connectivity analysis. Martens (2007) analyzed the impact of 
bicycle infrastructure at stations on ridership and the results indicate that improved bicycle services 
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at stations lead to an increase in public transport ridership and a (small) decrease in car use on 
specific routes. Duarte and Rojas (2012) evaluated Curitiba and Bogota’s BRT stations to determine 
if different modes of transportation were connected, including sidewalk access, bicycle parking, 
car parking, and accessibility for the disabled. They found that Bogota’s BRT stations had better 
pedestrian and bicycle access than Curitiba. Neither of the cities had good access for private cars 
but better access for taxis. Our study further extends the literature on station level connectivity and 
their influence on ridership.

DATA AND METHODS

The goal of this study is to create a multimodality index (MI) that comprehensively measures a BRT 
station’s connectivity. Station elements that facilitate access by multiple modes were incorporated, 
including availability and quality of nearby sidewalks, availability of bike infrastructure, availability 
of parking for cars and bikes, connectivity to regular feeder buses, and presence of kiss-n-ride 
facilities. Field observations were made within a 100-feet radius for all 18 BRT Orange Line stations 
using a standardized checklist for all five variable categories included in the MI calculation. 

Figure 2: Multimodal Features for Ideal Connectivity

Data for Multimodality Index

Trained field observers assessed the following features:  sidewalks, bikeways, parking, bus 
connections, and taxi and/or kiss-n-ride.  This section explains the grading systems and how data 
for the index calculation were derived.     
1. Sidewalks. All streets segments within a 100-feet radius of the platform’s peripheral point 

were assigned a grade of 1-5 based on sidewalk availability, quality and compliance with the 
Americans with Disabilities Act (ADA). A detailed description of the sidewalk grading system 
is presented in Table 1. The final sidewalk assessment score for each station was calculated as 
the average sidewalk quality score of all street segments in the station buffer area (an area that 
covers a 100-foot radius around the platform’s peripheral point). 
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Table 1: Sidewalk Quality Scale
Grade Description Picture representation

1 EXTREMELY POOR QUALITY SIDEWALK: 
Unpaved path, sloping, uneven dirt or grass. A 
score of 1 means that no sidewalk is present:  no 
pavement 

2 POOR QUALITY SIDEWALK: Discontinuous 
paved sidewalk. A grade 2 sidewalk is non-
continuous. There are stretches of pavement, but 
also sections of grass and/or dirt.  In Los Angeles, 
some properties have a paved sidewalk in front 
of them and others have dirt or grass. Sidewalks 
of grade 2 are hazardous because they may seem 
walkable but can easily cause a person to fall 
because of the varied surfaces.

3 FAIR QUALITY SIDEWALK:  Paved sidewalk, 
with many obstacles: large cracks or bumps that 
can cause a person to trip or fall. Injuries can occur 
from falls on the cracks and bumps, especially for 
children and the elderly.

4 VERY GOOD QUALITY SIDEWALK: Paved 
level sidewalk with no surface obstacles, without 
ADA-complaint ramps at crossings.

5 EXTREMELY GOOD QUALITY SIDEWALK: 
Paved level sidewalk with no surface obstacles, with 
ADA compliant ramps at crossings.

Source of pictures: ©2015 Google Map

2. Bikeways. The length of Class I, II, and III bicycle infrastructure within a 100-feet radius of the 
stations was used to create a bike quality score. The Los Angeles Metropolitan Transportation 
Authority defines the three classes of bicycle right-of-ways as shown in Table 2. Utilizing field 
observation, all streets and right-of-ways within the station buffer was classified. GIS was then 
used to calculate the length of each bicycle right-of-way classification for each BRT station. 
The data were inputted into the Bikeway Quality equation, presented below, which expresses 
each station bike score as a ratio weighted by the access quality of each classification.    
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(1)   

where, l is the length of the road segments of each of the three class types i.
3. Parking. Counts of available parking spaces were recorded as continuous variables in three 

mode categories:  1) car parking spaces, 2) bike lockers, and 3) bike racks  
4. Bus Connections. Using the Los Angeles Metropolitan Transportation Authority transit line 

maps, the count of regular, express, and municipal bus connections to each Orange Line BRT 
station was recorded as continuous variable data. Connections were defined as the number of 
other transit lines which intersect and stop at an Orange Line BRT station.  

5. Taxi and/or Kiss-n-ride. The presence of designated taxi and passenger kiss-n-ride zones was 
recorded as a binary variable (available=1; not available=0). Designated facilities, marked by 
signage, could be provided as short-term parking spaces, turnout areas, and curbside temporary 
parking.

Table 2: Classification for Bikeways
Class Description Picture representation

Class I A class I bicycle path is 
completely separated from 
automobile traffic. Class I paths 
are usually found along current 
transit systems, rivers, parks, and/
or former train track corridors.

Class II A class II bicycle lane is on-street 
with painted striping to separate 
cyclists from moving traffic and 
parked cars.  This is the most 
common class in Los Angeles.

Class III A bike route or a sharrow is 
not a lane or a path. Markings 
or signage remind automobile 
drivers that cyclists may be 
present. 

Source of pictures: ©2015 Google Map
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Data for Statistical Analysis

Station-level boarding and socio-economic data were collected for each station. Ridership data for 
the BRT Orange Line wer obtained from the Los Angeles Metropolitan Transportation Authority 
for the year 2014. Socio-economic data were obtained from several open source databases: the 
American Community Survey, Zillow, and Great Schools (a non-profit organization which provides 
nationwide school statistics). The following control variables were obtained for a one-mile radius 
from each station: density (measured in persons/acre), the distance from downtown (Union Station), 
the log of household income for the census tracts adjacent to the station, and the number of high 
schools within a mile radius from the station. The control variables are chosen with the assumption 
that denser areas have more people closer to stations that can use transit (Kolko 2011);  stations 
closer to downtown are likely to have more ridership due to proximity to residences, shopping, and 
jobs;  richer households are more likely to operate their own personal vehicles and not use transit 
(Neff 2007); and a larger number of teenagers in the area are expected to increase a population of 
more mobile residents who are less likely to have their own personal vehicles (Woldeamanuel 2014). 
The 2014 boarding data were available for both east and west travel, so west boarding was added as 
a dummy control variable. The data were also available by month (except for incomplete November 
data that were removed) so March, which had the highest ridership, was used as the reference 
variable and dummy variables were added for the rest of the months.  Metro also collect the data 
as weekday, Saturday, and Sunday boarding. Because of commuting, higher numbers are expected 
during the weekdays, so Saturday and Sunday were both added as dummy variables because of 
expected lower ridership during the weekend.

Table 4: Data for Statistical Analysis
Variables Mean Std. Dev. Min. Max.
Station Boarding 
Total boarding (2014) per station 35,664.61 36,918.99 10,145 167,514
Westbound boarding (2014) per station 17,601.83 37,972.49 0 167,514
Eastbound boarding (2014) per station 18,062.78 12,047.38 0 54,663
Weekdays boarding (2014) per station 17,402.06 16,888.02 5,618 77,303
Saturday boarding (2014) per station 10,334.44 11,239.88 2,601 50,411
Sunday boarding (2014) per station 7,928.11 8,951.76 1,926 39,800
Control Variables (1-mile radius)
High Schools (count) 3.44 2.04 0 7
Median Household Income ($) 53,658 9,784 41,910 73,557
Population Density (persons/acre) 16.66 6.31 6.58 26.14
Distance from Union Station (miles) 21.95 6.37 12.7 33
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Multimodality Index Calculation

The multimodality index represents the relative ease to transition to or from the BRT line.  Since the 
measurement units for each subcomponent variable used to calculate MI varies significantly (as seen 
in Table 3), the scores are normalized:

(2)                                                                     

where the normalized score for each attribute j, NSj, is calculated as the score, Sj , minus the mean, 
, and then divided by the standard deviation, sj.  The normalized scores can be directly compared 

to assess each category’s relative impact on the multimodality index. 
The attributes, j, include sidewalk scores, bikeway scores, number of parking spaces, number 

of transit connections, presence of kiss-n-ride, number of bike spaces, and number of bike lockers. 
The normalized scores for each station are then inputted into the calculation of the multimodality 
index. As presented below, the MI is calculated as the sum of the normalized scores,  NSj  multiplied 
by their weights, wj.

(3) MI = Ʃj wj NSj                                                      

All the weights were set to one, except for the sidewalk quality and public transit connection 
scores. For these two variables the weight is set to two because they are underrepresented compared 
with the other modes.  Biking has locker, rack, and bikeway quality; auto mode has parking and 
kiss-n-ride facilities, but walking and transit only have one measure:  sidewalk quality and  public 
transit connection scores, respectively.  Regression analysis was used to test the effectiveness of the 
multimodality index as a predictor of ridership while using the control variables shown in Table 4. 

ANALYSIS RESULTS

Multimodality Index Results

The multimodality index scores for each Orange Line station are shown in Figure 3. The North 
Hollywood station has the highest MI, 8.15, indicating the best infrastructure combination to support 
modal transitions. The De Soto station has the lowest MI, -5.65, because it has neither parking 
nor kiss-n-ride drop off facilities and has a very low bikeway score. The two terminal stations of 
the route, Chatsworth and North Hollywood, have the best connectivity (scores of 8.14 and 8.15, 
respectively), with Metrolink and Red Line subways connections, respectively, and other increased 
infrastructure. Stations that serve community colleges (Pierce College and Valley College) have low 
MI scores, so increasing the scores at these stations might increase ridership of a population likely 
to use transit.



96

Multimodal Connectivity at Bus Rapid Transit

Figure 3: Orange Line Station Multimodality Index Scores

Statistical Analysis: The Effect of Multimodality Index (MI) on Ridership

The Multimodality Index (MI) was designed to assess how multimodal provisions at transit stations 
influence ridership levels. The index contains several characteristics (subcomponents) of Orange 
Line BRT stations such as sidewalk quality, overall bikeway quality, bike rack availability, bike 
locker availability, number of parking spaces, kiss-n-ride availability, and number of regular Metro 
bus connections. For this study, ridership is defined as boarding at the individual stations for all the 
months in 2014, except November where data were incomplete, as provided by LA Metro. 

To assess the benefits of the MI versus using the individual MI subcomponents, a correlation 
analysis (including boarding) was conducted. All the subcomponents were statistically significantly 
correlated with the boarding, but the strongest correlation were with the number of bike lockers, 
the number of transit connections and the number of parking spaces. The MI was positively 
and statistically significantly correlated to boarding and all the subcomponents with the higher 
correlations for sidewalk conditions, the number of parking spaces, and presence of kiss-n-ride (refer 
Table 5).  The MI allows for stations to be designed differently to suit the needs of the surrounding 
neighborhoods.  This creates flexibility for transit operators and the correlation analysis seems to 
support a strong relationship.
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Table 5: Correlation Analysis

Boarding MI Sidewalk
Overall 

Bike
Bike-
rack

Bike
locker

No. of 
space

Kiss-n-
ride Connection

Boarding 1.00

MI 0.29** 1.00

Sidewalk 0.15** 0.78** 1.00

Overall Bike -0.30** 0.50** 0.20** 1.00

Bike-rack -0.22** 0.50** 0.16** 0.63** 1.00

Bike locker 0.54** 0.43** 0.16** 0.14** 0.11** 1.00

No. of space 0.39** 0.72** 0.48** 0.12** 0.37** 0.44** 1.00

Kiss-n-ride 0.21** 0.61** 0.38** 0.17** 0.44** 0.50** 0.74** 1.00

Connection 0.50** 0.36** 0.27** -0.24** -0.32** 0.02* 0.11** -0.08** 1.00

(N=1257);	*Significance	at	0.05	level;	**Significance	at	0.01	level

Multivariable linear regression was performed with the MI or each subcomponent as an 
independent variable to determine the best predictor of boarding while including control variables 
(density, distance, income, high school availability, the route direction, and month). Because the 
subcomponents were correlated to each other causing multicollinearity for the regression analysis 
(refer Table 5), an overall regression with all the subcomponents cannot be performed. This is an 
advantage of having the MI, which includes all the subcomponents. 

The regression results shown in Table 6 demonstrate that MI is the best explanatory variable of 
ridership, because the adjusted R-squared value (0.41) is higher than most of the subcomponents.  
The MI and all the control variables are significant at the 99% confidence level.  The results of 
the first regression (with MI as independent variable, excluding the subcomponent variables) 
indicate that denser areas and stations with high MI have higher ridership; and stations further from 
downtown, with more high schools and higher income, have lower ridership The unexpected result 
of high school presence reducing ridership may be due to the significant amount of land they occupy, 
reducing the density and usage of the transit system.

All the other regression models were also statistically significant at p = 0.01 level.  The 
subcomponent variable was significant for all the models except the bike racks. Bike locker best 
explained boarding with an adjusted R-squared value of 0.55.  The more bike lockers, the more 
boarding.  The control variables had similar results and were statistically significant. In the other 
model higher sidewalk quality, high transit connection, increased parking spaces, and the presence 
of kiss-n-ride led to increased transit boarding as expected but with lower adjusted R-squared values 
(0.31, 0.44, 0.36, and 0.31, respectively). Bikeway quality has a negative beta value indicating an 
inverse relationship with ridership. This shows that for BRT riders, the station bicycle infrastructure 
is more important than bicycle infrastructure along the journey to access BRT. Next to bike locker, 
the MI is the best predictor of transit ridership. It also includes all the subcomponents, which could 
not be used together in the estimation due to collinearity issues, and therefore a useful tool for transit 
planning.   

The statistically insignificant subcomponent model included the number of bike racks. The 
number of bike racks was an insignificant variable probably due to cycling transit users’ aversion to 
using bike racks (Olwert et al. 2015) most likely due to weather and theft exposure. This contrasts 
with the significant variable of the number of bike lockers, where bikes are protected from exposure 
to weather and theft.  

In all the models, Saturday and Sunday boarding were less than the weekdays and were 
statistically significant. Westbound boarding was also statistically less significant than eastbound. 
The months were also used in the models but broadly not statistically significant.
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DISCUSSION AND CONCLUSION

The multimodality index provides objective scores of multimodal access to each Orange Line 
stations. Because the MI calculations use normalized data, the MI is a relative measure that 
compares stations in a given study, the Orange Line in this case. By comparing the MI scores across 
the stations, planners can identify stations on the Orange Line that are potentially underserved 
and subcomponents that might increase ridership. Increased multimodal accessibility provides 
convenient alternatives to Los Angeles’ primary commute mode:  the automobile.  The MI identifies 
stations that have poor access, providing insight to transit agencies.   
 The correlation and regression analysis supports the MI as a reliable predictor of ridership, but 
allows transit agencies flexibility in deciding how to increase the MI score. Different combinations 
of facilities can still produce a similar MI score. A station with abundant parking can have the same 
MI score as a station with less parking but more biking and pedestrian facilities. Transit planners 
should increase MI scores by providing facilities that the station types need.  A residential station 
may require more parking while an employment center station may require better pedestrian quality 
and more transit connections. This has, in fact, been implemented in part along the Orange Line.  
Terminus stations and stations with industrial and employment activities have higher MI scores 
because of their better walking and biking facilities and increased transit connections. However, 
the residential stations that have high MI have abundant parking. Thus, it is recommended that 
multimodal infrastructure be provided based on the neighborhood characteristics surrounding the 
station.

The correlation and regression analysis suggests that bike lanes and bike racks, when assessed 
independently, are not significant in affecting ridership. This contradicts the literature (USDOT-
FHWA 1992; Nelson and Nygaard 2009), and may be a result of the short buffer zones used (100 ft). 
A quarter mile would be recommended as a more reasonable length for similar studies.  However, 
as part of the overall MI, the bicycle components are still important.  

The MI could be used to compare individual stations across regions or even between regions. 
Using a random sample of stations across a large area, the normalization mechanism would allow 
for comparison of a particular station to the greater population of stations. The MI score for a 
particular station could be compared with the median MI to provide insight on useful upgrades.  
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by Mohammed S. Obeidat, and Malgorzata J. Rys

Driver safety is considered an important issue to departments of transportation. One way to increase 
highway safety is to improve the visibility of overhead guide signs for drivers. Visibility improving 
methods	include	the	use	of	sign	illumination	or	retroreflective	sheeting	materials.	This	paper	focuses	
on	sign	illumination	by	comparing	five	light	sources	including	high	pressure	sodium	(HPS),	metal	
halide (MH), mercury vapor (MV), induction lighting, and light emitting diode (LED). A laboratory 
experiment	was	conducted	to	compare	effective	light	distribution	of	each	light	source	and	a	cost	
analysis was performed to compare initial, maintenance, and operating cost components of the 
light sources. Results of the light distribution experiment indicated that HPS was the optimum light 
source followed by MH, induction lighting, MV, and LED. Induction lighting is a promising lighting 
technology	 which	 features	 good	 efficiency	 and	 long	 life.	 According	 to	 cost	 analysis,	 induction	
lighting	was	the	most	effective	source,	followed	by	the	LED,	HPS,	MV,	and	MH.	Of	the	five	light	
sources considered, induction lighting provided the best overall performance when considering 
initial cost, operating cost, expected maintenance, and sign illuminance. Environmentally, LED 
does not contain mercury, and for those agencies that prefer using sources that are friendlier with 
the environment, the LED can be their best choice.

INTRODUCTION 

Motor vehicles are important modes of transportation worldwide. To safely operate a motor vehicle, 
however, drivers must simultaneously utilize various skills and perform multiple tasks while ac-
counting for factors such as other roadway users, traffic signals, signs, and environment (Dukic and 
Broberg 2012). Based on road statistics, the most important driving skills include the acquisition 
and processing of information and the ability to make appropriate decisions when needed (Dewar 
and Olson 2007).

One primary mission of the Federal Highway Administration (FHWA) in the U.S. is to increase 
roadway safety. According to the National Highway Traffic Safety Administration’s (NHTSA) Fa-
tality Analysis Reporting System (FARS), 32,719 people were killed in motor vehicle traffic crashes 
in the U.S. in 2013 (NHTSA 2014). Statistics show that 25% of all motor vehicle travel occurs at 
night, but approximately 50% of all traffic fatalities occur during nighttime hours (FHWA 2008).

Guide signs in U.S. are typically green and are located along a roadway to notify drivers of des-
tinations and exit information. Overhead guide signs, which are essential for driver guidance, have 
the primary objective of providing drivers with information regarding destinations.

As required in the Manual on Uniform Traffic Control Devices for Streets and Highways 
(MUTCD), overhead guide signs must be illuminated or manufactured from retroreflective sheeting 
materials (FHWA 2009). Departments of transportation (DOTs) in the U.S. must consider whether 
to add light sources to overhead guide signs currently installed on highways, or add modern 
retroreflective sheeting material to these signs, to improve sign visibility for drivers during nighttime, 
thereby possibly reducing potential accidents due to driver confusion.

This paper consists of three phases to evaluate light sources used to illuminate overhead guide 
signs: laboratory experiment to compare five light sources, cost analysis of the tested light sources, 
and testing light sources for toxic materials contents. The laboratory experiment was conducted 
to compare light distribution of five light sources. These light sources include metal halide (MH), 
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mercury vapor (MV), high pressure sodium (HPS), induction lighting, and light emitting diode 
(LED) that produces white color. A cost analysis was also performed to compare the five light sources 
based on initial maintenance and operating costs during the lifespan of each light source. Because of 
the presence of toxic materials in the studied light sources such as lead and mercury, except for the 
LED, which is free of lead and mercury, environmental-related issues were considered as additional 
decision criterion when comparing light sources. The objective of this paper was to determine the 
most effective light source to be used by DOTs to improve overhead guide sign visibility during 
nighttime. Determination was made based on three decision criteria: light distribution, average 
annual cost, and environmental-related issues of light sources. Light distribution refers to the values 
of the luminous intensities radiated in all relevant directions by the luminaire. Luminaire refers 
to a complete electric light unit. In this paper, the luminous intensities that fall on a sign will be 
considered to evaluate the light distribution of different light sources.

 
LITERATURE REVEW

Drivers of all ages often experience more difficulty driving at night compared with daytime driving. 
Visibility issues include driver’s visual acuity, contrast sensitivity, distance judgment, and color 
discrimination (Lagergren 1987). Roadway lighting is a basic public amenity that contributes to 
a safer environment for drivers and pedestrians. Efficient roadway lighting can improve personal 
security, traffic flow operations, and safety because drivers can more clearly recognize street 
conditions and geometry of the roadway (Medina et al. 2013). 

Guide signs must be visible and clear for intended drivers in order to allow for suitable driving 
response time. In fact, “overhead highway signs must be highly visible and legible so that drivers can 
detect, read and interpret the information contained on the signs in time to respond appropriately” 
(Bullough et al. 2008). Desirable attributes for guide signs include high visibility and legibility 
during day and night. Legibility is defined as “the readability of a particular writing style, or font” 
(Amparano and Morena 2006).

Traveling on U.S. roadways can be confusing and challenging for drivers if driving routes are 
not easily understood or clearly marked, especially when the driver is unfamiliar with the driving 
location (Amparano and Morena 2006). Travelling can be challenging for older drivers, age 65 and 
older, especially those older drivers who have cognitive or physical disabilities (Amparano and 
Morena 2006). However, various engineering improvements, such as sign placement, legibility of 
sign lettering, sign illumination, retroreflectivity, and sign size, can increase the probability that a 
driver will detect signs and comprehend sign messages.

Overhead guide signs can be illuminated from the back, known as back-illuminated, or by 
utilizing external light sources to illuminate the sign face (Bullough et al. 2008). External light 
sources are light fixtures designed to illuminate overhead guide signs by transforming electrical 
power into a visible light. Another way of illuminating overhead guide signs is by using luminous 
sources or elements, such as LED, to produce required sign characters (Bullough et al. 2008).

Retroreflective sheeting materials can also be used to enhance overhead guide sign visibility for 
drivers. Obeidat et al. (2014) performed a study to find DOTs’ policies for increasing the visibility of 
overhead guide sign on highways. They found that the most commonly used retroreflective sheeting 
material by states for overhead guide sign legend is Diamond Grade (type IX followed by type XI), 
and High Intensity (types III and IV) for sign background. Obeidat et al. (2015) in another study 
compared three retroreflective sheeting used by DOTs for overhead guide sign: Engineering Grade 
(type I), High Intensity (type IV), and Diamond Grade (type XI). The comparison was based on 
results of a field experiment involving human participants and a cost analysis. They recommended  
DOTs use high intensity (type IV) retroreflective sheeting for guide signs since it increases visibility 
and consequently increases safety. 



105

JTRF Volume 55 No. 1, Spring 2016

Light sources associated with little short-wavelength light are less effective for vision than light 
sources that produce greater short-wavelength (blue), even if the measured light level is similar, 
because of the human eye’s shifted response to light at some nighttime light levels. This is true for 
certain locations in the field of view and for certain light levels (Bullough 2012a). One wavelength 
of light represents the distance between two consecutive corresponding points of one wave. Wave 
in physics is defined as any regularly recurring event. Waves are characterized by wavelength, 
frequency, and the speed at which they move. Several light sources used for roadway illuminating 
devices are available in the market. These light sources are classified into conventional or traditional 
lighting and new light source generation. Conventional lighting includes incandescent lamps and 
electric discharge lamps, and new light source generation includes induction lighting and LED.
 
Conventional Light Sources

In incandescent lamps, an electrical current passes through a wire and the wire heats to a certain 
level, causing the wire to glow and emit light (Lopez 2003). According to Lopez (2003), tungsten 
halogen and common incandescent are two prominent types of incandescent lamps. Tungsten 
halogen (quartz iodide) is not used for roadway lighting (Lopez 2003). The common incandescent 
lamps consist of a tungsten filament enclosed in a glass envelope that is attached to a metal base. 
The bulb is evacuated first (all gases and other materials are removed) and then inert gas (usually 
nitrogen or argon) is introduced into the bulb to increase bulb life and efficiency. The common 
incandescent lamp has low initial and operating costs, but it also has low efficacy (lumens per 
watt) and a short lifespan ranging between 1,000-2,000 hours (BITS 2012). One disadvantage of 
incandescent lamps is that they contain some toxic materials such as lead and mercury, which makes 
them non-environmentally friendly (California Department of Toxic Substances Control 2010).

According to Lopez (2003), five common types of electric discharge light sources are: 
fluorescent, induction fluorescent, MV, HPS, low pressure sodium (LPS), and MH (Lopez 2003).

Based on Lopez (2003), fluorescent lamps contain mercury to produce a mercury arc which 
operates at low vapor pressure to produce ultraviolet light. The mercury arc in fluorescent lamps 
is produced when an electric current excites the mercury vapor, which works at low pressure to 
produce ultraviolet light. The ultraviolet light strikes a phosphor coating the bulb, which causes 
visible light to be emitted. Fluorescent light sources have a moderate initial cost, long lifespan, and 
high efficacy (30-70 lumens/watt). However, since fluorescent lamps contain mercury, they are not 
environmentally friendly. 

Induction fluorescent lamps have the same principle as fluorescent lamps except that they do not 
have a tubular shape (Lopez 2003). Some types of induction fluorescent lamps have a high efficacy 
(up to 75 lumens/watt) with extremely long lifespan (up to 100,000 hours). Induction fluorescent is 
suitable for low-mounting heights. However, induction fluorescent is non-environmentally friendly 
because it contains toxic materials such as lead and mercury (California Department of Toxic 
Substances Control 2010). 

MV light sources contain a quartz arc tube with a mercury arc which produces visible light and 
ultraviolet light. The glass envelope of the MV light sources helps filter some of the far ultraviolet 
light (Lopez 2003). Two types of MV are available in the market: clear light and phosphor-coated 
light. MV light sources that include phosphor-coated light are used for sign lighting. Advantages of 
MV light include relatively long lifespan and high efficacy (30-65 lumens/watt). One disadvantage of 
MV is the presence of mercury, consequently causing the MV light source to be non-environmentally 
friendly. The MV is no longer available in the U.S. market because of the Energy Independence and 
Security Act (EISA) of 2007.

In the HPS light source, light is produced by an arc in a ceramic tube containing sodium and 
other elements to improve color rendition (Lopez 2003). Advantages of HPS light include relatively 
low initial cost, long useful life, high efficacy (45-150 lumens/watt), and the ability to maintain 
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relatively high light output throughout the lifespan (Bullough 2012b). One disadvantage is that 
most HPS light sources contain toxic materials, such as mercury, which makes those HPS types 
non-environmentally friendly (Recycle SD Inc. 2014).

In the LPS light source, light is produced by an arc tube (gas discharge tube) in a long glass 
envelope that only contains sodium in order to produce a yellow light with poor color rendering 
(Lopez 2003). Advantages of LPS include moderately long lifespan and high efficacy (145-185 
lumens/watt). Most of LPS light sources are non-environmentally friendly because they contain 
mercury (Recycle SD Inc. 2014).

MH light source is similar to the MV light source, but in addition to mercury, it contains various 
metal halides which provide excellent color rendering, resulting in white light (Lopez 2003). MH 
light sources have been available for several decades, and recent technology has increased efficacy 
of MH sources, increased the useful life, and improved lumen maintenance (Bullough 2012b). 
Lumen maintenance refers to the comparison between the amount of light produced from a light 
source when it is brand new to the amount produced after using the light source for a period of 
time. New MH light sources that have ceramic arc tubes and modern source starting methods have 
increased efficiency, lifespan, and lumen maintenance. One disadvantage of MH is the presence of 
mercury, rendering it non-environmentally friendly.

New Generation of Light Sources

Unlike conventional fluorescent lamps that have electrodes at either end of the lamp tube, induction 
lighting uses radio frequencies to stimulate lamp material to produce light (Bullough 2012b). 
Induction lamps, however, use radio frequency or microwaves to create induced electrical fields 
which excite gases to produce light. Induction lamps manifest the same color as conventional 
fluorescents and share their diffuse appearance, but induction lamps do not require the longer tubular 
shape of most fluorescent sources. Diffused light is non-directional light, where the light has an even 
intensity. Induction lighting is a lighting technology with efficacy and lifespan advantages over 
conventional lighting (Deco Lighting 2010). 

Induction light source manufacturers claim that induction light sources have rapid start-up and 
operates at peak efficiency with minimal warm-up time. Disadvantages of induction lighting include 
limited directionality of light beams  and inability to focus compared with LEDs, hazardous lead, 
and mercury, which require special handling for disposal, inability to function efficiently in cold 
environments, production of ultraviolet (UV) radiation which harms products such as retroreflective 
sheeting, and delayed adoption of induction-based roadway lighting systems, which is already in 
its peak of improvement because of rapidly improving LED technology (Deco Lighting 2010 and 
GRAH Lighting 2014).

Recent technologies and advances in solid-state lighting have resulted in an LED light source 
that produces white light. This light is produced by short wavelength LEDs that create blue light 
which, when combined with phosphor, converts the blue light into yellow light, resulting in a white 
mixture (Bullough 2012b). LED-based roadway lighting products offer several advantages over 
traditional lighting technologies. Modern LED light sources used for street and sign lighting are 
also free of mercury and are compliant with Restriction of Hazardous Substances (RoHS) (Tri-State 
LED 2012). However, a study performed by Lim et al. (2010) showed that some LEDs contain other 
toxic materials such as lead, arsenic, and phosphorus, which make them not environmental friendly. 
Based on Lim et al. (2010), LEDs that produce white light color are free of mercury, lead, arsenic, 
barium, gadolinium, indium, tungsten, and yttrium. The unique environmental advantage of all LED 
types, no matter the produced light color, is that they do not contain mercury (Lim et al. 2010). 

The LED light source for roadway lighting also meets the American Association of State Highway 
and Transportation Officials’ (AASHTO) requirements published in 2005 with approximately 7% 
reduction in energy use. An energy savings of 30% to 50% can be achieved by replacing HPS with 
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LED or induction lighting in residential areas, and 35% to 40% by replacing HPS with LED or 
induction lighting at rural intersections where peripheral visibility is essential (Bullough 2012b).

Advantages of LEDs include low energy consumption, long lifespan, high color quality, 
improved performance in Mesopic vision conditions (Mesopic vision is defined as the light levels 
at which cones and rods contribute to human vision [Avrenli et al. 2012], where in the human 
retina there are two types of photoreceptors: rods and cones), instant lighting, small compact size, 
directional light, light pollution reduction, environmentally friendly characteristics, dimming 
capabilities, free of mercury and vibration, and breakage resistance. However, LED disadvantages 
include high maintenance cost, less luminous efficacy than conventional light sources, heat 
conversion rate (LEDs have a higher rate of electric power to heat conversion), issues in obtaining 
white light, and problems associated with the LED module arrays such as increasing failure chance 
of a component when the number of used LED chips (a semiconductor chip) increase, individual 
LEDs overdriving in the array when LEDs start to fail (when an LED fails, the remaining LEDs 
will be driven harder, therefore, the temperature will be increased and the life of the system will 
be reduced), and leading to multiple shadows (Avrenli et al. 2012). LEDs can be used to illuminate 
roadways only if numerous LED chips are incorporated together into a module of LED, and then 
several LED modules are incorporated into an LED module array (Avrenli et al. 2012). Additional 
details of LED’s advantages and disadvantages can be found in Avrenli et al. 2012.  
 
Light Sources Comparison

Table 1 shows a comparison summary of the light sources included in the literature review section, 
and can be used to illuminate overhead guide signs on roadways.

Table 1: Light Sources Comparison

Light Source
Lighting Cat-

egory
Efficacy (lu-
mens/watt) Lifespan

Toxic Materials 
Contents

Common incandescent Conventional Low Short Lead and mercury
fluorescent lamps Conventional High Moderate Mercury 
Induction fluorescent Conventional High Long lead and mercury
MV Conventional High Long Mercury 
HPS Conventional High Long Mercury
LPS Conventional High Long Mercury
MH Conventional High Long Mercury
Induction lighting New generation High Very long Lead and mercury
LED New generation High Very long None

METHODOLOGY

The first phase of this research was the light distribution experiment. A laboratory experiment 
was conducted to evaluate light distribution of five light sources used for overhead guide sign 
illumination. The purpose of the experiment was to determine optimal light distribution for each of 
the five light sources and identify which light source provides the most efficient illuminance on the 
sign. The optimal light distribution of a luminaire is the best distribution of light intensity on a sign. 
The studied light sources and their fixtures’ specifications are shown in Table 2. The LED type that 
was used in this experiment was producing white color and designed for sign’s lighting. 
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Table 2: Light Sources and Fixtures Specifications 
Light Source Fixture specifications
The 250 watt MH Consists of aluminum reflector that contours the light source to 

distribute light through a borosilicate glass refractor. Borosilicate 
glass is a low-melting glass produced from a mixture of boric oxide 
and silica. For maximum efficiency and uniformity, precisely cut 
prisms direct the light onto the billboard.

The 250 watt MV Consists of aluminum reflector that contours the light source to 
distribute the light through clear and tempered glass which is 
resistant to heat and shock, along with convex-shaped glass lens 
made from borosilicate.

The 250 watt HPS Consists of die-cast aluminum housing with electro-coat paint finish. 
It has clear thermal and impact resistant tempered glass, and convex 
borosilicate glass lens.  

The 85 watt induction 
lighting

Consists of hydro-formed aluminum reflector that contours the light 
source to distribute light through a borosilicate glass refractor. For 
maximum efficiency and uniformity, precisely cut prisms direct the 
light onto the billboard.

The 62 watt LED Consists of three adjustable arrays, each containing eight LEDs. 
The fixture is associated with all-weather marine aluminum, glass 
diffuser, and stainless steel fastener. Adjustable arrays mean that the 
rod where the LEDs are attached can be adjusted or rotated.

The second phase of the paper was to conduct a cost analysis for the five light sources, including 
initial cost, operating cost, and maintenance cost. In the last phase, the presence of toxic materials 
in the light source and its energy consumption were considered as environmental issues. Finally, 
results of the light distribution experiment are corroborated with results of the cost analysis and 
environmental-related issues to determine the most cost-effective light source to illuminate overhead 
guide signs to increase illuminance on the sign, which contributes to better sign visibility for drivers 
and consequently better roadway safety.

LIGHT DISTRIBUTION EXPERIMENT

Setup and Procedure

The current experiment was conducted in the workshop of the Industrial and Manufacturing Systems 
Engineering Department at Kansas State University, Manhattan, Kansas. Black cardboard covered 
all windows, and the emergency light in the room was turned off to ensure complete darkness. A 
white sheet of paper, 15 ft. wide and 9 ft. high, mounted to the wall represented an overhead guide 
sign of similar size. The Kansas Department of Transportation (KDOT) had established a standard 
horizontal distance between the light source unit and sign to be 5-6.5 ft. In this experiment, the light 
source unit was centered in front of the sign on the floor at a horizontal distance of 5 ft. from the 
white sheet on the wall to the nearest edge of the light source. 

A grid of 1-ft. increments was marked on the sheet of paper, as shown in Figure 1. At a height 
of 8 ft. from the top of the opposing light source on the floor, the horizontal line on the paper was 
named row “A” and the line at a height of 1 ft. was row “H.” Similarly, the vertical line at the left 
side of the paper was named column “1” and the vertical line on the right side was column “14.”
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Figure 1: Grid on White Paper
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A Minolta illuminance meter measured illuminance in lux (which is the International System 
[S.I.] unit of illuminance) at each grid line intersection (row-column intersection) beginning at the 
top row (row A), left side of the white sheet of paper (column 1), to the bottom right side. Three 
illuminance measurement readings were taken at each intersection and the average was calculated at 
each intersection point after removing any outlier. The unit of measurement for illuminance is lux, 
and each lux is equivalent to lumen/meter2. Illuminance can also be measured by foot-candle, which 
is lumen/foot2. When running the experiment, each light source was given a suitable warming period 
by being turned on at least 45 minutes before commencing illuminance readings to ensure that the 
light source would run at maximum luminance output. In addition, the Minolta illuminance meter 
was calibrated before beginning each experimental run. 

For the 250 watt MH light source, the unit was placed in front of the white paper at four angles 
measured between the bottom of the light source unit and the floor. These angles were 0o, 5o down, 
10o down, and 15o down. Similarly, for the 250 watt MV light, the unit was placed in front of the 
white paper at angles 0o, 5o up, 5o down, and 10o down. For the 250 watt HPS light source, the light 
source unit was set in front of the paper at 0o angle only because the output illuminance was very 
high. For the 250-watt induction light, the angles were 0o, 5o down, 10o down, and 15o down. Finally, 
for the 62 watt LED light source, the light source unit was placed in front of the white paper at a 
0o angle because the design of this LED includes independent and adjustable LED arrays (or LED 
module arrays). The purpose of studying various angles was to identify at what position the light 
source provides higher illuminance on the sign.

RESULTS AND DISCUSSION 
 
Since some light sources were tested at more than one angle, illuminance values at each row-
column intersection of the white paper were compared for each light source in order to determine the 
angle at which light distribution produced maximum illuminance values. This section of the paper 
compares light distribution for each light source at various angles and compares optimum light 
distribution for each light source at the selected angle with other sources’ optimum light distribution, 
to determine which source provided optimum light distribution and increased illuminance on the 
sign that contributes to better visibility for drivers and higher safety during nighttime.
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Finding Optimum Light Distribution for Each Light Source

The MH Light Source. Light distribution of the 250 watt MH light source at four angles is shown 
in Figure 2. Based on results in that figure, the optimum light distribution of the 250 watt MH light 
source was when the angle between the bottom of the light source unit and the floor was 15o down. 
Light distribution at 15o down appeared to be uniform and illuminance values range between 200-
600 lux, approximately. These illuminance values are comparatively high and might cause light 
pollution, and may not provide high visibility to drivers. Light pollution is defined as brightening of 
the night sky from street lights and other light sources, which inhibits the observation of stars and 
planets and has a disruptive effect on natural cycles.

Figure 2: Light Distribution of the 250 Watt MH Light Source at Four Angles



111

JTRF Volume 55 No. 1, Spring 2016

MV Light Source. Light distribution of the 250 watt MH light source at four angles is shown in 
Figure 3. Based on results shown in that figure, the optimum light distribution of the 250 watt MV 
light source was when the angle between the bottom of the light source unit and the floor was 10o 
down. Light distribution at 10o down appeared to be uniform, and illuminance values range between 
70-160 lux, approximately.

Figure 3: Light Distribution of the 250 Watt MV Light Source at Four Angles
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HPS Light Source. Light distribution of the 250 watt HPS light source at 0o angle is shown in 
Figure 4. Light distribution for HPS at 0o angle was considered the optimum because measured 
illuminance values were very high, consequently allowing motorists to see the guide sign because of 
increased illuminance on the sign. Light distribution appeared to be uniform and illuminance values 
range between 400-800 lux, approximately. These illuminance values are comparatively very high, 
and might cause a light pollution.

Figure 4: Light Distribution of 250 Watt HPS Light Source at 0o Angle

Induction Light Source. Light distribution of the 85-watt induction lighting at different angles is 
shown in Figure 5. Based on results shown in that figure, the optimum light distribution of the 85-
watt induction light source occurred when the angle between the bottom of the light source unit and 
the floor was 15o down. Light distribution appears to be uniform at 15o down and illuminance values 
range between 110-300 lux, approximately.

LED Light Source. The 62W LED light source was placed in front of the white paper at 0o angle 
because the design of this LED includes independent and adjustable LED arrays. By rotating 
these arrays, LED light can be focused toward any direction on the sign. The manager of this LED 
manufacturer asserted that this LED was ready for installation because the LED array angles were 
appropriately fixed to focus light along a sign similar to the white paper in the experiment. Light 
distribution of the 62 watt LED light source at 0o angles is shown in Figure 6. The optimum light 
distribution of the 62W LED light source occurred when the angle between the bottom of the 
light source unit and the floor was 0o. Light distribution appeared to be uniform and illuminance 
values range approximately between 20-165 lux. Light distribution of the 62 watt LED light source 
demonstrated low illuminance values. 
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Figure 5: Light Distribution of the 85 Watt Induction Light Source at Four Angles

Figure 6: Light Distribution of the 62 Watt LED at 0o Angle



Effective Light Source

114

Comparison of Optimum Light Distributions of Five Light Sources

To determine which light source was most advantageous to illuminate overhead guide signs, the 
optimum light distribution at each row of the white sheet of paper was compared for the five light 
sources. Figure 7 shows light distribution at each row on the sheet of paper (A to H) for the sources. 
Again, row “A” is 8 ft. in height from the light source top surface, and row “H” is 1 ft. in height. 

For each row, the 250 watt HPS light source provided highest illuminance values, meaning that 
it provides overhead guide signs with highest illuminance. The 250 watt MH light source provided 
the next highest illuminance values, followed by the 85 watt induction lighting, the 250 watt MV, 
and the 62 watt LED. However, higher illuminance does not mean better visibility. At some point, 
the visual performance reaches a plateau as a function of light level, and higher levels of light do 
not meaningfully increase visibility. Based on the previous fact, we excluded both the 250 watt HPS 
and the 250 watt MH since they produced high illuminance values. The MV is no longer available 
in the U.S. market because of the EISA of 2007; however, some other countries still use this source. 
As a result, the 85 watt induction provided the average illuminance values and it could be the best 
light source to increase visibility and safety.

LIGHT SOURCES COST ANALYSIS

Various companies were contacted to ask the prices and the costs associated with the 250 watt 
MH, 250 watt MV, 250 watt HPS, 85 watt induction, and 62 watt LED light sources studied for 
light distribution. Four companies provided information regarding the cost and lifespan of the five 
light sources studied in 2013. Cost calculations were based on light source use for an average of 
11 hours per night (average daily operating hours), and the price of electricity was assumed to be 
$0.08 per kWh. The selection of 11 hours as an average daily operating hours was an approximation 
from researchers who performed this study, and the selection of the electricity price to be $0.08 per 
kWh was suggested by a KDOT engineer in charge of signage lighting. Labor and equipment costs 
were not included. Replacing ballast was not included in calculations since adding it will not affect 
comparison.

In this section, a detailed comparison between the five light sources is presented. A 50-year 
comparison period was selected for cost comparison in order to include maintenance factors for the 
light sources over time. Cost analysis shown in Table 3 includes initial, operating, and maintenance 
cost components of each light source. Data of initial light source cost and lifespan in hours for each 
source were obtained from the manufacturers.
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Figure 7. Comparison of Optimum Light Distribution at Each Row on the White Paper
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For calculations in Table 3, life in years was calculated by dividing the light source life in hours 
by average daily operating hours (11 hours) and then dividing by 365 (days per year). For example, 
the 62 watt LED life is approximately 12.5 years (50,000 hours/ [11 hours per day × 365 days per 
year]). Daily power consumption was calculated by multiplying wattage consumed per hour for 
each light source by daily operating hours. For example, daily power consumption for the 62 watt 
LED is 0.682 kW (0.062 kW × 11 hours). Annual power consumption was calculated by multiplying 
daily power consumption by 365 (days per year). For example, yearly power consumption for the 
62 watt LED is 248.93 kW (0.682 kW × 365 days). Life power consumption was calculated by 
multiplying yearly power consumption for each light source by its life in hours, dividing by average 
operating hours per day, and then dividing by 365 days per year. For example, power consumption 
during the life of the 62 watt LED is 3,100 kW (248.93 kW × 50,000 hours / [11 hours × 365 days]). 

The amount of required maintenance during a 50-year period was calculated by dividing the 
50-year period by the lifespan in years for each light source and subtracting one. One was subtracted 
because the assumption was made that at the time of installation, no maintenance is required and 
the light source was ready for use. For example, for the 62 watt LED during the 50-year period, 
three times the maintenance is required ([50 years/12.5 years]-1). Required maintenance is different 
based on light source type. For the 62 watt LED, required maintenance means replacing the entire 
light source fixture. For other light source types, however, lamp replacement is the primary required 
maintenance along with replacing ballast. LED maintenance cost is equal to the initial installation 
cost with the assumption that the cost remains constant over time. For example, three maintenance 
times are required for the 62 watt LED during 50 years, for a total maintenance cost of $1,800 (3 
times × $600).

Total power consumption in 50 years was calculated by multiplying power consumption per 
year times 50. For example, power consumption for the 62 watt LED per 50 years is 12,446.5 
kW (248.93 kW × 50 years). Daily operating cost was calculated by multiplying daily power 
consumption for each light source by the electricity price ($0.08 per kWh). For example, for the 
62 watt LED, daily operating cost is $0.05456 (0.682 kW × $0.08). Annual operating cost was 
calculated by multiplying daily operating cost by 365 days per year. For example, for the 62 watt 
LED, annual operating cost is $19.914 ($0.05456 × 365 days). Life operating cost was calculated by 
multiplying annual operating cost by the light source’s lifespan in hours, dividing by daily operating 
hours, and then dividing by 365 days per year. For example, life operating cost for the 62 watt LED 
is $248 ($19.914 × 50,000 hours/ [11 hours × 365 days]).
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The total cost for each light source over 50 years was calculated by adding the initial cost of the 
light source, operating cost over 50 years, and maintenance cost over 50 years. For example, total 
cost for the 62 watt LED is $3,395.7 ($600 + $995.7+ $1,800). The average annual cost of a light 
source was calculated by dividing the total cost during 50 years by 50. For example, the average 
annual cost for the 62 watt LED is $67.91 ($3,395.7/50 years).

Based on the average annual cost of each light source as shown in Table 3, the 85 watt induction 
light was found to be the most cost-effective light source, followed by the 62 watt LED, 250 watt 
HPS, 250 watt MV, and 250 watt MH. 

Based on annual power consumption for each light source, the 62 watt LED was found to be 
most effective for power consumption because it consumes the least amount of power, and the 
induction lighting was the next in energy consumption. In regards to environmental issues related 
to the presence of toxic materials in the light source, all light sources except the LED contained 
some amounts of lead or mercury or both, except for the 62 watt LED used in this experiment, 
which was the friendliest to the environment. In addition, the 62 watt LED has the minimum power 
consumption, which itself is a benefit to the environment.

CONCLUSIONS

Five light sources were compared to determine the optimal light source to illuminate overhead guide 
signs, consequently increasing their visibility and safety. These light sources were the 250 watt 
MH, 250 watt MV, 250 watt HPS, 85 watt induction, and 62 watt LED. Various decision criteria, 
including light distribution, average annual cost, and environmental issues, were considered in order 
to compare light sources.

According to the light distribution experiment, the 250 watt HPS light source had the highest 
illuminance readings, followed by the 250 watt MH, 85 watt induction lighting, 250 watt MV, and 
62 watt LED. Based on the fact that higher illuminance does not mean better visibility, both the 
250 watt HPS and the 250 watt MH produced high illuminance values on the sign, which led us 
to conclude that both of them might not increase visibility. The MV is no longer available in the 
U.S. market because of the EISA of 2007 law. Based on the light distribution criterion, the 85 watt 
induction, which provided the average illuminance values, could be the best light source to increase 
visibility and safety. 

Considering the cost analysis for the five light sources, the 85 watt induction light source is 
the most cost effective because it had minimum average annual cost, followed by the 62 watt LED. 
Considering environmental issues that are related to the presence of mercury in the light source and 
electric power consumption, the 62 watt LED was the most environmentally friendly light source 
because it is free of mercury and consumed the minimum electric power, thereby saving a large 
amount of electric energy.

Overall, merging the result of the light distribution experiment with the cost analysis, the 
induction lighting could be the most cost-effective light source that provides sufficient illuminance 
on the sign and contributes to better sign visibility to the driver, and consequently higher safety. For 
those agencies that prefer using sources that are friendlier to the environment, the LED could be a 
good choice.
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Book Review

Todorovich, Petra, Schned, Daniel, and Lane, Robert. High-Speed Rail: International Lessons for U.S. 
Policy Makers. Policy Focus Reports. Cambridge, Mass.: Lincoln Institute of Land Policy, 2011. 60 
pp. ISBN 978-1-55844-222-1. 

High Speed Rail: International Lessons 
for U.S. Policy Makers
by Melvin A. Sacks

The authors of High Speed Rail, Petra Todorovich, Daniel Schned, and Robert Lane, state that over 
the past 50 years U.S. transportation spending has favored interstate highway and aviation systems. 
In contrast, China, Japan, Spain, France and Germany have been working on modern high-speed 
rail (HSR) systems. In the United States, HSR construction has been stalled because of a lack 
of additional appropriations from Congress. A high-speed line in California is still on track to be 
completed, though with relatively modest federal funding.

The authors divide the book into several parts: international experience with HSR, the potential 
benefits of HSR, U.S. policy and programs for HSR, and HSR progress in California and the 
Northeast corridor.

HSR in cities in Europe, China, and Japan attract commercial development and urban 
regeneration. It offers greater operating energy efficiency than competing modes and takes up less 
land than highways. The authors state that an HSR line could create similar transportation, economic, 
environmental, and safety benefits in America if only there was sufficient funding.

Since the 1964 inauguration of Japan’s first Shinkansen bullet train connecting Tokyo to 
Osaka, commercial HSR has been constructed in 14 countries, generating billions of passenger 
trips. It saves many hours in travel time, is reliable, rapid and safe, increases regional mobility 
and accessibility, saves energy by reduced fuel use, regenerates cities and regions, and increases 
economic productivity.

The United States failed to develop HSR and fully realize its benefits despite numerous planning 
studies and aborted attempts to expand rail service in various regions since 1960. Americans are 
therefore unfamiliar with HSR and its potential benefits. Aviation and highways have been funded 
in the tens of billions of dollars, but not so passenger rail. Such funding has been a precondition to 
bringing large rail capital projects to fruition in other countries. The authors could have developed 
a detailed discussion of how the U.S. political process and its divergent ideologies, especially with 
parsimonious congressional appropriations, prevent meaningful infrastructure improvements, 
particularly in regard to rail projects, presently and in the near future. However, the authors do well 
in pointing out the divergence between advanced countries with developed HSR systems and the 
United States, currently without a true HSR network.

At least 19 countries around the world are building or planning new HSR lines. China has 
invested several hundred billion dollars in building the world’s most extensive HSR system. In 
Saudi Arabia, Haramain’s high-speed line will operate on the 280-mile line from Mecca to Jeddah.

In the United States, President Barack Obama, in his 2012 budget, proposed $53 billion over the 
following six years to begin developing a national high-speed and connected passenger rail network 
that could connect 80% of Americans. Congress rejected the proposal, calling it wasteful and not 
true high-speed technology.  In light of the opposition, proponents need to lay out a compelling case 
for its benefits for any possibility legislative success. 
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High-speed trains with an advanced signaling system can operate with greater frequency, 
creating greater capacity to move passengers. In 2011, 11 countries directly operated high-speed 
trains at speeds up to 185 mph and several can reach 215 mph, the current international standard. 
High speed trains often travel in dedicated high-speed tracks.

Two of the most notable HSR technologies introduced are tilting mechanisms to counteract 
physical forces around curves and magnetic levitation trains, without tilting mechanisms but 
requiring installation of new dedicated high-speed tracks. 

GENESIS AND TRACK RECORD

The high-speed Tokyo line in Japan has carried more than five billion passengers and is the world’s 
busiest HSR line. 

The authors point out that HSR did not come right away, and it was not until 1981 that France 
introduced the TGV, Europe’s first high-speed line connecting Paris with Lyon. It reduces travel 
time to two hours for the 280-mile journey. In the 1980s Germany, Belgium, and Spain converted 
to HSR lines. Since 2000 HSR lines have been introduced in England, South Korea, Switzerland, 
Taiwan, Netherlands, and Turkey. China opened its first HSR line in 2003 and shortly after built the 
world’s most extensive HSR network with well over 5,000 miles of HSR.

This long experience with HSR in other countries gives them an advantage in design, 
manufacturing, and safety issues compared with the United States. Also, government is largely 
involved in the development and operation of HSR overseas, and the authors could have noted the 
hostility to government in many quarters in the United States that views government funding of 
significant infrastructure projects unfavorably.  In the United States, only the Acela is somewhat 
high speed and briefly reaches 150 miles per hour but averages only 75 miles per hour. Infrastructure 
along the Northeast Corridor seriously needs upgrading. For example, the Baltimore tunnel built 
in 1873, currently used by Acela and regional and commuter trains, limits speeds on the Northeast 
Corridor to 30 mph due to a sharp turn and steep grade. Outside the Northeast Corridor, trains are 
owned by freight railroads, and this restricts the ability to develop passenger rail speed frequency 
and reliability. U.S. administrations and congresses tried to develop selected HSR corridors in a 
program called high-speed Intercity Passenger Rail, but Congress wasn’t allocating a competitive 
grant program of sufficient funding.

California’s HSR was initially awarded a federal grant designed to be a core express service 
with top speeds of 220 miles per hour on new dedicated tracks. Since the train going at 200 miles 
per hour requires 16 miles of straight track and also need significant distances to break and come to 
a stop, stations must be well spaced along HSR corridors.

ECONOMIC BENEFITS 

The authors note that after 50 years of international experience HSR has proven it is capable of 
producing a wide range of transportation, economic, and environmental benefits:

•	 Shortened travel time, especially between urban centers. It improves overall access to 
many destinations. It captures over 80% of air for rail trips if a high-speed train trip is less 
than two and a half hours.

•	 Excellent safety records.
•	 Better on-time performance than cars or airplanes.
•	 Efficiencies: the typical HSR line has the ability to transport the same number of people in 

the same direction as a three-lane highway but on a fraction of the land area.
HSR’s ability to promote economic growth is grounded on its capacity to increase access to 

markets. Economic development is more likely to occur in places with more and better transportation 
infrastructure. HSR increases productivity, employment, and wages.
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HSR stations attract new tourist and business travelers who might not have made the trip 
otherwise. A study by the U.S. Conference of Mayors in 2010 concluded that building HSR 
would increase spending annually by about $225 million in the Orlando region, $360 million in 
Metropolitan Los Angeles, $15 million in the Chicago area, and $100 million in Greater Albany, 
New York.

HSR creates thousands of construction-related jobs in design, engineering, planning, and 
construction, as well as maintenance and operations. In China, over 100,000 construction workers 
have been involved in building the HSR line that connects Beijing and Shanghai. Sustained 
investment could foster the development of new manufacturing industries for rail cars and other 
equipment, and generate large amounts of related employment. HSR can rejuvenate neighborhoods 
around HSR stations. HSR can generate growth in real estate markets and anchor investment in 
commercial and residential developments around train stations. 

ENVIRONMENTAL BENEFITS

HSR offers greater operating efficiencies on a per-passenger-mile basis than competing modes, such 
as single occupancy automobiles, or airplanes that require significant amounts of fuel to get off the 
ground. Japanese trains are estimated to use one-quarter of the energy of airplanes and one-sixth of 
private automobiles per passenger mile. But high-speed trains must maximize load factors to realize 
greater efficiencies.

Attracting passengers to HSR can reduce overall energy usage. HSR is the only available mode 
of long-distance travel that is not currently dependent on motor fuels. However, it is powered by 
electricity, which is often generated by fossil fuels. A new HSR line in the Northeast Corridor, 
powered by electricity from the current energy mix, would shift 30 million riders from cars and 
planes to rails, attract six million new riders, and still reduce car emissions of carbon monoxide by 
more than three million tons annually. Here the authors could have more solidly tied the need to 
reduce emissions to the urgent need of reducing carbon dioxide, which increases global warming.

TECHNOLOGICAL INNOVATIONS

Innovation is needed in HSR. Since more energy is devoted to higher speeds, designing trains to 
be lighter in weight and more aerodynamic would require greater innovation, especially for crash 
worthiness. This presents a challenge to U.S. HSR. In addition, crash avoidance systems require 
innovation in advanced signaling systems.

U.S. POLICY

The initial commitment to high-speed rail began in 2008 when Congress passed the Passenger Rail 
Investment Procurement Act (PRIIA), which authorized funds for Amtrak and the states to develop 
HSR corridors between 2009 and 2013. Appropriations totaling $10.5 billion for high-speed and 
passenger rail became the centerpiece of the Obama Administration in its infrastructure agenda. 
However, the subsequent Congressional appropriation for FY 2011 stripped the passenger program 
of any funding in 2011 and rescinded $400 million from the FY 2010 budget. That put the brakes 
on HSR.

CALIFORNIA AND NORTHEAST CORRIDOR

California’s 2009 population of 37 million people is expected to grow by 25 million by 2050. 
The Northeast will add an additional 12 million people by 2050. Major highways and airports are 
reaching capacity and HSR is badly needed to move people around. California would need to add 
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3,000 highway lane miles and five new airports at twice the cost if HSR is not available. Otherwise 
California will experience very high congestion on its highways.

Upon completion of HSR, the California system will operate trains at speeds up to 220 miles 
per hour, reducing the travel time to two hours 40 minutes for the 432-mile trip from Los Angeles to 
San Francisco. The cost is at least $43 billion and its funding includes public-private partnerships. 
Developing the first segment of the Initial Operating Section from Madera to Bakersfield will cost 
$6 billion, consisting of $3.3 billion in federal funding and $2.6 billion in Proposition 1A bond 
proceeds. It is the largest HSR project in the United States and a success or failure would signal 
whether future HSR lines in the country will be built. But opposition has grown as the expense of 
HSR in California has impinged on other budget priorities. Local communities are also voicing 
opposition. Defunding of PRIIA has raised doubts about continued federal participation in the HSR 
program.

The 450-mile Northeast Corridor (NEC) between Boston and Washington is America’s most 
intensely used rail line and one of the most heavily traveled corridor in the world, accounting for 
approximately 13 million annual passengers. Since November 2009 Amtrak has experienced 20 
consecutive years of ridership growth.  Amtrak predicts that by 2050 ridership will grow 59%. 
But roadblocks for HSR include outmoded tracks, bridges, power, and communication systems on 
many stretches that need to be upgraded. Amtrak needs $8.8 billion to achieve a state of good repair 
in a congressional environment of cost-cutting. This is in addition to $43.5 billion to expand the 
corridor’s capacity and reliability. Amtrak introduced Acela Express for highest speed rail service 
in December 2000, but has struggled to obtain enough funding for basic maintenance, capital 
investments, or funding to improve reliability. Lacking a dedicated track network, Acela trains 
mostly operate in congested tracks that also carry northeast regional service and assorted commuter 
rail lines, resulting in much lower rates of on-time performance and frequency compared with HSR 
systems around the world. Acela trains average only 62 miles per hour between New York and 
Boston. Economic mobility benefits would be enhanced if a dedicated HSR right-of-way could be 
built. But the cost would be over $117 billion. The $27 trillion economy in the Northeast is known 
for its high population density and its growing congestion of existing rail, roads, and runways, 
making a strong case for this HSR investment. But without federal support, national and regional 
HSR projects are unlikely to secure a necessary state or private funding commitments needed to 
proceed.

In summary, the authors did a good job of presenting the international experience with HSR, 
the benefits, and the lack of progress for HSR in the United States. The authors could have made 
even a stronger case for the congestion and consequent harm to the economy if an efficient means of 
moving people, most notably high-speed rail, does not proceed in the United States.

Melvyn A. Sacks is the Maryland representative on the Council of the National Association of 
Railroad Passengers, and is currently president of the Transportation Research Forum-Washington 
Chapter. He did an in-depth study of world railroad locomotives at the Export-Import Bank of the 
United States. Sacks experienced travel on European and Asian passenger trains ranging from 
Vietnam to Spain and Russia.  He also traveled extensively on U.S. passenger trains prior to Amtrak.
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Transportation Research Forum

Statement of Purpose

The Transportation Research Forum is an independent organization of transportation professionals. 
Its purpose is to provide an impartial meeting ground for carriers, shippers, government officials, 
consultants, university researchers, suppliers, and others seeking an exchange of information and 
ideas related to both passenger and freight transportation. The Forum provides pertinent and timely 
information to those who conduct research and those who use and benefit from research.
 The exchange of information and ideas is accomplished through international, national, and 
local TRF meetings and by publication of professional papers related to numerous transportation 
topics.
 The TRF encompasses all modes of transport and the entire range of disciplines relevant to 
transportation, including:
  Economics     Urban Transportation and Planning
  Marketing and Pricing   Government Policy
  Financial Controls and Analysis   Equipment Supply
  Labor and Employee Relations   Regulation
  Carrier Management    Safety
  Organization and Planning   Environment and Energy
  Technology and Engineering   Intermodal Transportation
  Transportation and Supply Chain Management 

History and Organization

A small group of transportation researchers in New York started the Transportation Research Forum 
in March 1958. Monthly luncheon meetings were established at that time and still continue. The 
first organizing meeting of the American Transportation Research Forum was held in St. Louis, Mis-
souri, in December 1960. The New York Transportation Research Forum sponsored the meeting and 
became the founding chapter of the ATRF. The Lake Erie, Washington D.C., and Chicago chapters 
were organized soon after and were later joined by chapters in other cities around the United States. 
TRF currently has about 300 members.
 With the expansion of the organization in Canada, the name was shortened to Transportation 
Research Forum. The Canadian Transportation Forum now has approximately 300 members.
 TRF organizations have also been established in Australia and Israel. In addition, an Interna-
tional Chapter was organized for TRF members interested particularly in international transporta-
tion and transportation in countries other than the United States and Canada.
 Interest in specific transportation-related areas has recently encouraged some members of TRF 
to form other special interest chapters, which do not have geographical boundaries – Agricultural 
and Rural Transportation, High-Speed Ground Transportation, and Aviation. TRF members may 
belong to as many geographical and special interest chapters as they wish.
 A student membership category is provided for undergraduate and graduate students who are 
interested in the field of transportation. Student members receive the same publications and services 
as other TRF members.
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Annual Meetings

In addition to monthly meetings of the local chapters, national meetings have been held every year 
since TRF’s first meeting in 1960. Annual meetings generally last three days with 25 to 35 sessions. 
They are held in various locations in the United States and Canada, usually in the spring. The Cana-
dian TRF also holds an annual meeting, usually in the spring.
 Each year at its annual meeting the TRF presents an award for the best graduate student paper. 
Recognition is also given by TRF annually to an individual for Distinguished Transportation Re-
search and to the best paper in agriculture and rural transportation.
 Annual TRF meetings generally include the following features:
 • Members are addressed by prominent speakers from government, industry, and 
  academia.
 • Speakers typically summarize (not read) their papers, then discuss the principal 
  points with the members.
 • Members are encouraged to participate actively in any session; sufficient time is 
  allotted for discussion of each paper.
 • Some sessions are organized as debates or panel discussions.
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