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A Message from the JTRF
Co-General Editors
The Fall 2015 issue contains the usual wide variety of contemporary transportation topics that is the 
distinguishing characteristic of JTRF.  Topics in this issue include the following:

•	 Technologies and data to measure travel time on urban streets
•	 Performance evaluation of public transit
•	 Forecasting future traffic needs
•	 Competition impacts on railroad wheat rates
•	 Northern plains farm truck marketing patterns
•	 Potential policy changes for Canada’s grain transportation system
In “Comparative Evaluation of Technologies and Data Sources to Capture Travel Time at 

Section-Level on Urban Streets,” Pulugurtha and co-authors capture travel times on urban streets 
in Charlotte, North Carolina, using three different technologies (Bluetooth, INRIX and GPS).  The 
authors found that the ability of the technologies to measure accurate travel tim,e increases with 
increases in traffic volume. Also accurate measurement of travel times varies by time of day.  The 
authors concluded that Bluetooth is less accurate and undependable compared with GPS and INRIX

Kamrul Islam and co-authors develop a model based on the Markov Chain technique to evaluate 
the performance of a public transport route in “A Simplified Method for Performance Evaluation of 
Public Transit Under Reneging Behavior of Passengers.”  The model addresses a special situation 
where a passenger left behind by a bus leaves the system without any further waiting.  The authors 
offer insights to the problem faced by transit system designers with regard to fleet size and the size 
of vehicles.  The authors used the following metrics to evaluate performance: number of passengers 
served by the system, number of passengers that were unable to use the service because of space 
unavailability, and number of unused spaces throughout the transit operation.  Authors conclude that 
their analysis provides insights for optimum selection of fleet size and vehicle size.

In “Traffic Impact Analysis (TIA) and Forecasting Future Traffic Needs: Lessons From Selected 
North Carolina Case Studies,” Pulugurtha and co-authors conduct an evaluation of TIA case studies, 
review current practice, and recommend procedures that could be used to better forecast and plan 
future traffic needs. The authors found that considering regional traffic growth rate, peak hour factor, 
heavy vehicle percentage, and other off-site developments would yield better forecasts.

Michael W. Babcock and Bebonchu Atems study the relationship of intrarailroad competition 
and rail rates for wheat in the nine largest wheat producing states in “Intrarailroad and Intermodal 
Competition Impacts on Railroad Wheat Rates.” The overall objective is to investigate railroad 
pricing behavior for wheat shipments. The rate model was estimated with OLS in double-log 
specification utilizing the 2012 Confidential Waybill sample and other data. The authors found that 
the distance from origin to destination and the total shipment weight had the expected negative 
relationships with railroad wheat rates and were statistically significant. The distance from origin to 
the nearest barge loading location had the expected positive relationship to railroad wheat rates and 
was also significant. The weight of each covered hopper car and the Herfindahl-Hirschman Index 
were both non-significant. However, the authors used other data to determine that the intrarailroad 
competition for wheat shipments within states appears to be present in most of the nine states.

In “Northern Plains Grain Farm Truck Marketing Patterns,” Kimberly Vachal conducted 
a survey of 6,000 farm operators in the Northern Plains region to gather information about on-
farm storage and truck markets. The objective was to provide information about farm truck grain 



4

marketing patterns since there is no other source for these data. The author found that 79% of the 
wheat and soybeans was delivered to elevators, whereas the share of corn delivered to elevators was 
54%.  The author noted that farmers could use the results for their investment assessments and that 
local and regional planners and policy makers can use the information in calibrating travel demand 
and freight flow models for investment and asset management choices.

Savannah Gleim and James Nolan examine both transportation allocation and infrastructure 
capacity problems associated with moving grain from western Canada to export position. The 
analysis is conducted with GIS software using grain industry data. After developing and estimating 
base model results, the authors simulate the impact of larger trains with capacities of 50, 100, 
and 150 cars. This scenario resulted in significantly fewer total hours traveled and total distance 
traveled. The authors simulate the impact of greater grain volumes moving through the system (i.e., 
grain demand and supplies are doubled). The authors found railroad network capacity should not 
constrain any major expansion of grain movement in the system for the foreseeable future.

Michael W. Babcock				    James Nolan
Co-General Editor – JTRF				   Co-General Editor – JTRF
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Comparative Evaluation of Technologies and 
Data Sources to Capture Travel Time at 
Section-Level on Urban Streets
by Srinivas S. Pulugurtha, Rahul C. Pinnamaneni, Venkata R. Duddu, R.M. Zahid Reza

This paper focuses on capturing section-level (a signalized intersection to the next) travel times on 
urban street segments using Bluetooth detectors as well as from INRIX data source and comparing 
it with manual and Global Positioning System (GPS) floating test car methods (test car with a 
trained technician and GPS unit to capture travel time between selected points) for each travel time 
run. Results obtained indicate that section-level travel time data captured using Bluetooth detectors 
on urban street segments are less accurate and not dependable when compared with GPS unit and 
INRIX. The role of various on-network characteristics on the percentage difference in travel time 
from GPS unit, INRIX, and Bluetooth detectors was also examined.

INTRODUCTION

Travel demand has been increasing with the development of modern civilization, growth in population 
and need for more travel. The subsequent effect of this increasing travel demand is overcrowding 
or congestion of the existing transportation network. Addressing congestion has been one of the 
primary goals of transportation network managers, planners, and engineers. The Federal Highway 
Administration (FHWA) recommends using the travel time experienced by users to quantify the 
effect of congestion (AASHTO 2008). Travel time is also a useful measure for motorists or network 
users to make route choice, mode choice, or departure time decisions.

The most conventional means of collecting travel time data is using a floating test car method. 
In the floating test car method, a test car is driven by a driver along the study corridor at the speed 
of traffic. A trained technician in the test car notes down time and position of the test car at regular 
intervals to calculate travel time between selected points. The sample size from this method is 
typically very limited. It is also a tedious, expensive, and time-consuming data collection method.

Travel times are also captured using sensors that emit radio waves or a laser beam by installing 
magnetic loops in pavement that detect the presence of vehicles and by automatically matching 
license plates through recognition systems, vehicle identification tag reader systems, and video 
surveillance cameras (Haghani et al. 2010; Vo 2011). A few other means of collecting travel time 
data include cell phone tracking, Global Positioning System (GPS) equipped floating test cars, and 
transit buses with GPS or automatic vehicle location units (Kim et al. 2011).

Besides the aforementioned technologies, Bluetooth detectors are an alternative and 
inexpensive means of accurately estimating travel time (Vo 2011). Bluetooth detectors compute 
the travel time based on Media Access Control (MAC) addresses (a unique identification number 
for each Bluetooth enabled device) of Bluetooth enabled devices in the vehicles. In recent years, 
private sources of data pertaining to travel time and average speed, such as INRIX, Tom Tom, and 
HERE, have emerged as a valuable source of travel time information. The sources of data such 
as INRIX provide real-time, historical, predictive traffic services, and incident data on freeways, 
highways, and secondary roadways, including arterial and side streets of North America and Europe 
(INRIX 2013). Data provided by the private sources are captured using GPS unit equipped vehicles, 
from mobile devices, sensors, or other electronic mechanisms. The archived traffic data are used to 



Travel Time

6

facilitate traffic management, traveler information, and planning activities for both local and long 
distance travelers.

The applicability of INRIX and Bluetooth detectors to accurately collect travel time on 
all types of facilities (in particular, urban arterial streets) is still unclear though their use has 
rapidly increased in recent years. The key objectives of this research, therefore, are: 1) to collect 
and evaluate the accuracy of estimated section-level travel time data on urban streets from a GPS 
equipped floating test car, INRIX and Bluetooth detectors and compare them with data obtained 
using manual floating test car method, 2) research and compare the ability to capture temporal 
variations in travel time from the selected technologies/data sources of travel time, 3) examine the 
correlation between travel times collected manually and  using various technologies/data sources, and 
4) recommend the best technology or the best combination of technologies/data sources to capture 
travel time on urban streets. The data collected manually are considered as the most accurate in 
this research (as it does not involve any technology in collecting the travel time data). It is collected 
for each travel time run by trained technicians exactly at the locations where travel time from other 
technologies and data sources are captured. Also, the trained technicians made sure there were no 
other factors (example, incidents) influencing the results.

LITERATURE REVIEW

Methods and technologies such as using test (or probe) vehicles, installing magnetic loops or 
sensors at intersections, automatically matching license plate numbers, and electronically reading 
vehicle identification numbers  (say, at toll booths) were used to collect travel time data on freeways 
and arterial streets in the past (Vo  2011). However, all these methods have intrinsic disadvantages. 
For instance, capital and operating costs of license plate matching are low, but this method cannot 
provide real-time travel time or incident data (Turner 1998). Travel times by matching vehicle 
license plate or tag numbers at toll booths can acquire a larger sample size than test vehicle studies. 
However, it requires complex planning and implementation (Courage et al. 1998).

Past studies, such as those performed by Quiroga and Bullock (1999), Chu (2013), and Bel-O-
Mar Regional Council (2013), show that the GPS floating test car method is an efficient method to 
collect accurate travel time data. Fewer staff requirements, minimal  human  error,  detailed  data  
collection  opportunity,  good  accuracy,  and automatic location identification procedures are some 
of the many benefits of using a GPS floating test car or vehicle for travel  time data collection.  
Signal loss, retrieving the base map, necessary and updated equipment identification, limited 
sample, and high cost per unit of data are some of the drawbacks of this data collection method 
(Turner 1998).

Bluetooth detectors can be set up on the side of a street to track users’ Bluetooth enabled device 
through its electronic identifier (Wasson et al. 2008) and collect data without causing any interruption 
to traffic flow. Moreover, the cost of the travel time data point from Bluetooth detectors can be as low 
as 1/300th of the cost of comparable floating test car data (Traffic Technology International 2013). 
The Bluetooth detectors are easy to install, efficient, and cost-effective considering unitary price and 
the number of units needed to collect data (Rivey 2013). The type of antenna and its placement 
affects the performance of Bluetooth detectors. Vertically polarized antennas that radiate a radio 
frequency signal in all directions (Porter et al. 2010), placing two omni-directional antennas (that 
radiate or intercept a radio frequency signal equally well in all horizontal directions) at the same 
location on opposite sides of the street (Malinovskiy et al. 2011), and placing the antenna at 8- to 
10-feet height (Brennan Jr. et al. 2010; Vo et al. 2011; Robert et al. 2012) increases the number of 
Bluetooth enabled devices detected and data quality. Findings from Schneider et al. (2010) and Vo et 
al. (2011) indicate that placing the detectors at one to two miles apart on arterial streets would yield 
accurate travel time estimates. The travel time, obtained by recording MAC addresses at upstream 
and downstream Bluetooth detector locations (Martchouk et al. 2011), are of good quality and 



7

JTRF Volume 54 No. 3, Fall 2015

better than floating test car and license plate recognition system-based data gathered along freeways 
(Puckett and Vickich 2010; Haghani et al. 2010). While Quayle et al. (2010) and Sidhaye (2013) 
showed that larger datasets from the Bluetooth detector can more effectively capture performance 
characteristics of the arterial street than the traditional GPS floating test car method, Wasson et al. 
(2008) reported that data from arterial streets showed a significantly larger variance compared with 
data from the freeways due to the effect of traffic signals.

Private data sources such as INRIX (2013) provide a variety of mobile applications and Internet 
services pertaining to traffic. The real-time data from actual vehicles and mobile devices traveling 
through the street network are captured to provide a comprehensive, consistent, and timely measure 
of traffic congestion nationwide. The data are used to conduct studies at a macroscopic level. The 
typical INRIX data segment lengths for freeways are 1-3 miles in urban areas and 3-10 miles in 
rural areas. For arterial streets, typical INRIX data segment lengths are 0.5-3 miles in urban areas 
and 2-5 miles in rural areas (Turner 1998).

In the past, research was conducted to validate travel times obtained from various technologies/
data sources such as GPS unit, INRIX, Bluetooth detectors, etc. based on corridor-level analysis 
and not based on section-level analysis. The characteristics of a corridor vary from one section to 
another section along a segment, thus affecting the travel time. This effect can be minimized only by 
conducting section-level analysis. Also, previous research has shown that Bluetooth detectors can 
be effectively used for travel time studies on freeways. Their effectiveness as a source of travel time 
data for urban street segments has not been very clear from the past literature. This paper focuses 
on a comparison of section-level run-by-run travel time data for urban streets and to address the 
aforementioned limitations.

METHODOLOGY

Five segments on major urban streets in the city of Charlotte, North Carolina, were selected as the 
study segments to collect data and compare the effectiveness of the manual floating test car method, 
GPS floating test car method, INRIX, and Bluetooth detectors in capturing travel time information. 
The selected urban streets are connected to the Uptown area. This is the central business district 
(CBD) with major commercial and industrial zones. Table 1 summarizes the characteristics of each 
selected urban street segment.

Manual travel time data were collected using the floating test car method along the selected 
urban street segments. For manual data collection, travel time data collection sheets were prepared 
for each study segment, for both inbound and outbound direction. Each paper form contained 
information related to intersections along each segment where the arrival times were noted. The 
distance from one intersection to next intersection (or location) is defined as a section.

Table 1: Characteristics of Selected Urban Street Segments
Route

Number Route Name # Lanes Annual Average Daily Traf-
fic (AADT)

Speed Limit 
(mph)

11 N Tryon St 3 25,000-30,000 45
12 South Blvd 2 20,000-25,000 40
14 Providence Rd 2 30,000-40,000 45
20 Queens Rd 2 14,000-20,000 35
22 N Graham St 2 14,000-20,000 45



Travel Time

8

In addition, a GPS unit was placed in the floating test car. An off-the-shelf software package 
(PC-Travel) was used to process travel time data between the selected intersections of all five urban 
street segments. The computed details were exported as an Excel file.

Data were collected for two days along each study segment—from 7:00–9:00 a.m., 11:00 a.m.–
1:00 p.m., 4:00–6:00 p.m. on day 1, and 7:00–10:00 a.m. and 3:00–6:00 p.m. on day 2. Different time 
periods were selected to capture the difference in travel time and examine the effectiveness of the 
selected technologies/data sources in collecting travel time data by time period.

Overall, three trained technicians participated in the field data collection during each travel 
time run. The first person noted the arrival time on the sheet manually; the second person captured 
data at the same location using a GPS unit, whereas the third person drove the vehicle at the speed 
of traffic (overtake as many vehicles that passed the test car). Six to 10 travel time runs (in each 
travel direction) based on traffic conditions were captured during each time period.

Data Collection Using Bluetooth Detectors

Six Bluetooth detectors were provided with Location ID (identifier referring to the intersection) 
and Group ID (identifier referring to the urban street segment) in addition to name, description, and 
owner information. The data from Bluetooth detectors were collected in both encrypted and plain 
text format.

The Bluetooth detectors were installed at selected signalized intersections along each study 
segment for easy access of power from the signal controller cabinet. A majority of signal control 
cabinets are close to traffic heading toward the Uptown area. As the objective was to compare travel 
time from different technologies/data sources, the signalized intersections for the installation 
of Bluetooth detectors were selected in such a way that the position of Traffic Message Channel 
(TMC) codes (points where INRIX data are available) matched with the position of these 
signalized intersections. Manual and GPS data were also gathered at the same points. The mounted 
height of the antenna to capture data using Bluetooth detectors varied between 10-12 feet along the 
selected urban streets (based on recommendations from past research as discussed in the Literature 
Review section). Data were collected using the Bluetooth detectors, continuously for at least 
48 hours for each section along each study segment.

After uninstalling the Bluetooth detectors, the raw data were uploaded and processed using 
the Acyclica Analyzer website (https://cr.acyclica.com/). From the same website, travel times were 
noted by the travel time run and by time of the day with reference to the manual times obtained from 
the floating test car method for each section. Travel times for each section were tabulated separately 
for all the days the Bluetooth detector was installed. By selecting the required time period and 
direction of travel time run, the average travel time from all the detected Bluetooth enabled devices 
during that particular time period was noted.

The raw data may include outliers such as Bluetooth detections from bicyclists, pedestrians, 
transit system users, or customers who stopped at nearby stores/restaurants (includes coffee shops, 
gas stations, etc.). For an accurate estimation of travel times from Bluetooth detectors (to overcome 
the effect of data outliers), a filtering technique based on minimum and maximum speeds on a 
section was developed and incorporated. Maximum and minimum travel times were computed for 
each section based on these minimum and maximum speeds. The raw data with information for 
each detected Bluetooth enabled device were processed to then remove outliers for each section.The 
number of outliers is very small (at most two in a data collection hour for a section).

The default filtering procedure captures all Bluetooth enabled devices during a travel time run 
period. This could lead to erroneous travel time estimates. Therefore, the use of ±1.5 min, ±2.5 min, 
and ±5 min as data filter ranges for each travel time run was examined. These data filter ranges were 
applied for each travel time run. For example, if a manual run starts at 8:00:00 a.m. and ends at 
8:03:00 a.m. on a particular section and data filter range is ±1.5 min, the samples (Bluetooth enabled 
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devices) that are detected by the Bluetooth detector from 7:58:30 a.m. to 8:01:30 a.m. at the start 
and 8:01:30 a.m. to 8:04:30 a.m. at the end were taken into consideration for that particular travel 
time run. Based on these data filter ranges, the average travel times for each travel time run were 
estimated from Bluetooth detectors installed along the study segment and compared with travel time 
from other technologies/data sources.

INRIX Data Collection

INRIX data were obtained for the same days on which manual and GPS data were collected, for 
each selected urban street segment through the web interface.

The data from INRIX were also available for two complete days. For better comparison of 
technologies / data sources for travel time data collection, the travel time from INRIX was extracted 
for each travel time run on each data collection day. Like in the case of Bluetooth detectors, data 
were also filtered using ±1.5 min, ±2.5 min, and ±5 min as data filter range for each travel run.

RESULTS

As mentioned previously, data were collected and gathered along five urban street segments, for two 
days, during morning (am), mid-day (Mid-day) and evening (pm) time periods.

Table 2 shows the sample sizes based on time-of-the-day. For INRIX, the sample sizes shown 
are not the actual counts but are equivalent to the travel time runs for which data were captured. In 
the case of Bluetooth detectors, the sample sizes are based on the number of detections summed up 
for all the sections.

The number of detections from Bluetooth detectors is lower during the morning time period 
and higher during mid-day and evening time periods. This may be because of higher noise levels/
disturbance, traffic signals, weather and environmental conditions, or varying traffic volumes during 
different time periods.

Table 2: Sample Size by Time-of-the-Day
Technology/Source AM Mid-day PM

Manual/GPS 332 140 296
INRIX 332 140 296

Bluetooth (# of De-
tections)

Default filtering 301 3,936 6,454
±1.5 Min Filter 63 704 1,222
±2.5 Min Filter 83 933 1,550
±5.0 Min Filter 122 1,458 2,426

Comparison of Travel Time Estimates by Study Segment and Time-of-the-Day

Table 3 shows travel times collected manually and the percentage difference observed from the 
GPS unit, INRIX, and Bluetooth detectors during mid-day and evening time periods on day 1 along 
South Blvd (inbound) study sections. It can be noticed from Table 3 that travel times from the GPS 
are very close to those collected manually except for Run 1 at 4:46 p.m. This is because the GPS 
travel times have been collected from the same floating test car that was used for the manual data 
collection. The absolute value of the percentage difference in travel time from Bluetooth detectors 
are observed to be greater than INRIX for 9 out of the 24 travel time runs on sections along South 
Blvd (Table 3).

To better assist in comparing the results, the absolute value of percentage difference in travel 
time from the GPS unit, INRIX, and Bluetooth detectors when compared to the manual floating test 
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car were categorized into six different percentage range categories (0-10, 10-20, 20-30, 30-40, 40- 
50, and >50). The percent of travel time runs that fall in each category were summarized for each 
study segment. Figure 1 shows the percent of travel time runs by range of percentage difference in 
travel times (absolute values) for selected technologies/data sources and study segments during the 
morning time period.

The absolute value of percentage difference between GPS and manual travel time is less than 
10% for all sections along the five segments during the morning time period (Figure 1). The figure 
also reveals that travel time readings from INRIX and Bluetooth detectors differ from manually 
collected data. The absolute value of percentage difference is observed to be reasonably high in 
some cases. For instance, out of the total 408 travel time runs gathered along N Graham St, more 
than 100 travel time runs have absolute value of percentage difference in travel time greater than 
70% for the Bluetooth detectors.

Table 3:	 Percentage Difference in Travel Time by Travel Time Run Compared to Manual 		
	 Travel Times During Mid-day and Evening Time Periods Along South Blvd

Section Manual 
(Sec)

GPS 
(%)

INRIX 
(%)

Bluetooth 
(%)

Manual 
(Sec)

GPS 
(%)

INRIX 
(%)

Bluetooth 
(%)

Manual 
(Sec)

GPS 
(%)

INRIX 
(%)

Bluetooth 
(%)

5/29/13 Run 1 (Time) 11:15 AM Run 2 (Time) 11:49 AM Run 3 (Time) 12:17 PM

1 82.5 0.6 8.7 49.0 91.1 1.0 11.8 -18.3 90.0 1.1 31.3 -27.3

2 128.3 0.6 2.0 72.1 115.8 0.2 15.0 120.3 137.5 0.4 -7.1 77.7

3 323.4 0.2 -40.5 -29.5 323.8 0.1 -35.0 -22.3 246.7 0.5 -14.6 14.2

4 126.6 0.3 -24.2 7.7 123.9 0.9 -17.2 40.0 119.8 -2.3 -22.4 50.0

5/29/13 Run 1 (Time) 4:46 PM Run 2 (Time) 5:28 PM Run 3 (Time) 6:20 PM

1 150.5 16.3 -36.5 -5.3 184.0 -3.8 -49.7 1.8 173.0 1.2 -46.5 21.7

2 146.3 36.7 5.0 66.6 225.8 -0.4 -22.9 4.7 211.1 0.4 -32.4 57.1

3 244.2 -40.2 -11.1 -6.1 319.8 0.1 -46.0 -22.2 380.2 -0.1 -31.8 -28.9

4 157.9 -43.6 -16.8 -1.3 163.1 0.6 -37.1 -0.7 146.5 0.3 -50.9 -5.0

     
To account for the effect of traffic and examine the performance over time, the average travel 

time considering all travel time runs are computed for each technology/data source by time period. 
The percentage difference based on these averages are then computed and summarized by time 
period (Figure 2). In the figure, AM, MD, and PM indicate morning, mid-day, and evening time 
periods, respectively. The percentage differences shown in Figure 2 for GPS unit, INRIX, and 
Bluetooth detectors are in comparison to manually collected travel times. N Tryon St, South Blvd, 
and Providence Rd showed higher percentage difference during the evening time period (almost 
-44%, -27%, and -24%, respectively) in the case of INRIX data. The percentage differences for 
INRIX and Bluetooth detectors are reasonably close to each other irrespective of the time of day 
along Queens Rd. For N Graham St, the percentage difference for Bluetooth detectors varied by 
200%, 240%, and 94% during morning, mid-day, and evening time periods, respectively.

The inaccurate travel time estimates from Bluetooth detectors could be due to outliers from 
the default filtering procedure. Therefore, a micro-level analysis was done by filtering the raw data 
obtained from the Bluetooth detectors and compared to manually collected travel times. Based on 
the start and end times of the travel time run, data filter ranges of ±1.5 min, ± 2.5 min, and ±5 
min were tested to perform this micro-level analysis and compute absolute value of percentage 
differences in travel times.

Figure 3 shows the percent of travel time runs by range of percentage difference in travel times 
(absolute values) from Bluetooth detectors using various data filter ranges. Out of the three data 
filter ranges, ±1.5 min data filter range was observed to yield a reasonable sample size (though 
lowest of the three considered data filter ranges, as can be noted from Table 2). However, the sum 
of the total percent of travel time runs for ranges of percentage difference ≤40 is highest for ±1.5 
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min data filter range for all the five study segments. As an example, the total percent of travel time 
runs for N Tryon St is [(25.8% for 0-10 range of percentage difference) + (19.6% for 10-20 range 
of percentage difference) + (13.6% for 20-30 range of percentage difference) + (10.6% for 30-40 
range of percentage difference)] = 69.6% for ≤40 range of percentage difference in the case of ±1.5 
min data filter range (compared to ~65% and ~64% for ±2.5 min data filter range and ±5 min data 
filter range, respectively). This indicates that relatively more accurate results can be obtained using 
±1.5 min data filter range.

Figure 1:	 Percent of Travel Time Runs by Absolute Value of Percentage Difference in Travel 	
	 Time for Different Segments During Morning Time Period
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Figure 2:  Percentage Difference in Average Travel Time by Time Period
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Figure 3:	 Percent of Travel Time Runs by Absolute Value of Percentage Difference in Travel 
	 Time from Bluetooth Detectors Using Various Data Filter Ranges

The computed absolute value of percentage difference in travel times for the selected urban 
street segments, based on ±1.5 min data filter range, is shown in Figure 4. The INRIX travel times 
were also extracted and computed based on ±1.5 min data filter range for each travel time run to be 
consistent with travel times from Bluetooth detectors. The absolute value of percentage difference in 
travel times from GPS are mostly in the 0-10 range of percentage difference, while they are widely 
spread in all the ranges for INRIX and Bluetooth detectors. INRIX has higher bars for percentage 
differences in travel time up to the 30-40 range of percentage difference while Bluetooth detectors 
has higher bars in the 40-50 and >50 range of percentage differences.
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Figure 4:  Absolute Value of Percentage Difference in Travel Times for Different Segments 
	 Using ±1.5 min Data Filter Range

Table 4 summarizes the cumulative percent of travel time runs by absolute value of percentage 
difference in travel time collected along all study segments using GPS unit, INRIX, and Bluetooth 
detectors. Overall, the absolute value of percentage difference in travel time is ≤10% for 99.5% 
of travel time runs collected using GPS unit, indicating that it is the most reliable travel time data 
collection technology. While the absolute value of percentage difference in travel time is ≤20% for 
52.7% of travel time runs obtained from INRIX (no filtering), it is ≤20% for 34.5% of travel time 
runs collected using Bluetooth detectors (default filtering). Using ±1.5 min data filter range did not 
yield significant improvements in INRIX outputs. The percent of travel time runs from Bluetooth 
detectors, with absolute value of percentage difference in travel time ≤20%, increased to 40.8% after 
using ±1.5 min data filter range. While the proposed data filtering method improved the accuracy 
of travel time estimates from Bluetooth detectors, it still does not match outputs from INRIX (both 
with no filtering and ±1.5 min data filter range).
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Table 4:	 Cumulative Percent of Travel Time Runs by Absolute Value of Percentage 			
	 Difference in Travel Time

Absolute Value 
of Percentage 
Difference in 
Travel Time

GPS INRIX (No 
Filtering)

INRIX (±1.5 
Min Data Filter 

Range)

Bluetooth 
(Default 
Filtering)

Bluetooth (±1.5 
Min Data Filter 

Range)

≤10 99.5% 27.2% 28.7% 17.7% 24.3%
≤20 99.6% 52.7% 50.0% 34.5% 40.8%
≤30 99.6% 70.8% 73.2% 47.7% 54.0%
≤40 99.7% 86.7% 85.3% 60.3% 65.8%
≤50 100.0% 93.7% 91.9% 69.6% 77.2%
≤100 100.0% 100.0% 100.0% 100.0% 100.0%

Effect of Section Length on Bluetooth Detector Travel Time Estimates

Figure 5 shows the effect of the number of detections and section length (spacing between signalized 
intersections with Bluetooth detectors) on travel time estimates from Bluetooth detectors. The 
section length along the considered segments varied from 0.75 miles to 2.75 miles. Considering 
higher data filter ranges (±2.5 min and ±5 min) does not seem to lower the percentage difference of 
Bluetooth-detector-based travel time estimates when compared to manually captured travel time. 
The maximum percentage difference for shorter sections was observed to increase with an increase 
in the data filter range. However, the percentage difference tends to decrease with an increase in 
section length for ±1.5 min, ±2.5 min, and ±5 min data filter ranges (Figure 5) i.e., the accuracy of 
travel time estimates from Bluetooth detectors was observed to improve with an increase in spacing 
between the Bluetooth detector locations.

Statistical Analysis

To further compare the travel times obtained from GPS, INRIX, and Bluetooth with the manual 
travel time data, t-tests were conducted at a 95% confidence level. The results obtained from t-tests 
are shown in Table 5. From the results obtained, the zero is not between the upper and lower bound 
of 95% confidence interval. This shows a significant difference in the means at a 95% confidence 
level between manual and GPS, manual and INRIX, and manual and Bluetooth detector travel 
time estimates. However, unlike manual and INRIX or manual and Bluetooth detectors travel 
time estimates, the difference in means between manual and GPS travel time estimates is very low 
(around 0.4 seconds). The correlation coefficient between manual and GPS travel time estimates is 
close to 1, which indicates that manual and GPS travel times are almost the same.

The correlation coefficient between manual and INRIX travel time estimates is 0.53, which 
indicates a moderate correlation between the two travel time data samples. For Bluetooth detectors 
(default filtering) and manual travel time estimates, the computed correlation coefficient is 0.2 (very 
low). The lower correlation indicates that the default filtering procedure may not be accurate and 
that the data need further processing and analysis. The difference in the means between Bluetooth 
detectors based on filtering technique using start and end times proposed in this research and 
manual travel time was also observed to have a lower correlation as well (0.23), somewhat better 
when compared with the default filtering procedure. However, the mean, standard deviation and 
the standard error have reduced significantly when ±1.5 min data filter range was used, indicating 
overall improved results.



Travel Time

16

Figure 5: Relation Between Bluetooth Detector Spacing and % Difference

Table 5:	 Statistical Analyses Comparing Travel Times from Selected Technologies/Data 		
	 Sources

Null Hypothesis

Paired Differences

Correlation
Mean Std. 

Deviation

Std. 
Error 
Mean

95% Confidence 
Interval

Lower Upper

H0: HManual - HGPS = 0 -0.42 5.37 0.20 -0.81 -0.04 1

H0: HManual - HINRIX = 0 43.18 96.31 3.53 36.25 50.11 0.53

H0: HManual - HBluetooth (Default) = 0 -75.27 256.47 9.40 -93.73 -56.81 0.2

H0: HManual - HBluetooth (±1.5 min data 

filter range) = 0 15.35 113.08 7.86 0.14 30.85 0.23

Note: Alternative hypothesis H1: Difference in travel times is not equal to 0.

On-network characteristics such as speed limit, the number of signalized and un-signalized 
intersections, the number of driveways, the number of turnings (left or right), the number of bus 
stops, traffic volume by time period, the direction of travel (toward or away from Uptown area), 
and time of day may play an important role in travel time differences. These characteristics were 
collected for all the sections along each study segment through field visits. Since each section is 
different from others in length, the number of signalized and un-signalized intersections, the number 
of driveways, the number of turnings, the number of bus stops, and the average travel time during 
the time period were divided by the respective section length. As the number of lanes are different, 
traffic volume along a section was divided by the number lanes. Statistical analysis was conducted 
by computing the Pearson correlation coefficients (Table 6) to examine the role of the selected 
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variables in the percentage difference in travel time from GPS, INRIX, and Bluetooth detectors 
(default filtering to maximize sample size). In this research, two variables are considered to be 
highly correlated to each other if the computed Pearson correlation coefficient is ≤ -0.2 or ≥ +0.2 at 
a 95% confidence level (indicated by * in Table 6).

Table 6:	 Correlation Between the Percentage Difference in Travel Times from Selected 
	 Technologies/Data Sources and the Variables

 On-network Characteristics
Percent Diff. between 

GPS and Manual 
Travel Time per Mile

Percent Diff. between 
INRIX and Manual 

Travel Time per Mile

Percent Diff. between 
Bluetooth and Manual 
Travel Time per Mile

Inbound -0.04 0.01 -0.02
Outbound 0.04 -0.01 0.02
Speed Limit (35mph) -0.02 0.01 0.17
Speed Limit (45 mph) 0.02 -0.01 -0.17
# of Signalized Intersections 
per Mile -0.09 -0.08 0.16

# of Unsignalized Intersec-
tions per Mile -0.10 -0.02 -0.12

# of Commercial Driveways 
per Mile -0.05 -0.16 0.11

# of Residential Driveways 
per Mile 0.10 0.21* -0.25*

# of Turnings per Mile 0.16 0.22* -0.05
# of Bus-stops per Mile -0.06 -0.19 0.12
# of Lanes 0.18 0.20* -0.20*
Traffic Volume per Lane -0.20* -0.22* -0.20*
AM Time Period 0.11 0.11 0.00
Mid-day  Time Period 0.04 0.09 0.10
PM Time Period -0.15 -0.21* -0.10

* Correlation is significant at a 95% confidence level (probability value ≤ 0.05 level; two tailed test).

The percentage difference between GPS and manual travel time per mile is highly correlated to 
the traffic volume per lane at a 95% confidence level. The negative sign for traffic volume per lane 
indicates that an increase in traffic volume leads to a decrease in the percentage difference between 
GPS and manual travel time.

The percentage difference between INRIX and manual travel time per mile is highly correlated 
with the number of residential driveways per mile, the number of turnings per mile, the number of 
lanes, traffic volume per lane, and evening time period at a 95% confidence level. The negative sign 
for the traffic volume per lane indicates that an increase in traffic volume value leads to a decrease 
in the percentage difference between INRIX and manual travel time. Likewise, the negative sign for 
the evening time period indicates that the percentage difference between INRIX and manual travel 
time per mile would be lower during the evening time period. The positive sign for the number of 
residential driveways per mile, the number of turnings per mile, and the number of lanes indicate 
that an increase in their values leads to an increase in the percentage difference between INRIX and 
manual travel time.

The percentage difference between Bluetooth and manual travel time per mile is highly 
correlated with the number of residential driveways per mile, the number of lanes, and traffic volume 
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per lane at a 95% confidence level. The negative sign indicates that an increase in their value leads 
to a decrease in the percentage difference between Bluetooth and manual travel time.

CONCLUSIONS AND RECOMMENDATIONS

This paper presents an analysis and evaluation of the quality and accuracy of travel time 
estimates obtained from a GPS unit, INRIX, and Bluetooth detectors by comparing it with manual 
data. A GPS unit is the most reliable travel time data collection technology for urban street segments. 
The travel times from INRIX are more promising when compared to the travel times from the 
Bluetooth detectors. The Bluetooth detectors showed more samples in higher percentage difference 
range than INRIX. These findings were supported by t-tests conducted at a 95% confidence level.

Based on the start and end times of the run, data filter ranges of ±1.5 min, ±2.5 min, and ±5 
min were tested to perform micro-level analysis of the raw sample from Bluetooth detectors and 
examine the percentage differences in travel times. Out of the three data filter ranges, ±1.5 min data 
filter range yielded better results but the lowest number of detections. The travel times from INRIX, 
however, are more promising than those obtained from Bluetooth detectors even after filtering data 
using the proposed method (based on minimum and maximum travel time for each section and data 
filter range).

The relationship between the spacing of locations at which data are captured using Bluetooth 
detectors indicate that the percentage difference in travel time estimates decreases with an increase 
in the spacing between the Bluetooth detectors.

The ability to capture accurate travel time data using the selected technologies/data sources 
seems to increase with an increase in traffic volume (which could be associated to a higher number 
of samples in the case of INRIX and Bluetooth detectors). Time of day seem to play a role in the 
number of samples captured (detection rate) using Bluetooth detectors. The numbers of detections 
are lower during the morning time period when compared with the evening time period (though the 
placement of Bluetooth detectors is mostly in signal control cabinets close to traffic heading toward 
the downtown area). The cause of difference in detections by time of day merits investigation and 
further research.
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A Simplified Method for Performance 
Evaluation of Public Transit Under 
Reneging Behavior of Passengers
by Md. Kamrul Islam, Upali Vandebona, Vinayak V. Dixit and Ashish Sharma

This paper develops a model based on the Markov Chain technique to evaluate performance of a 
public transport route. The model addresses a special situation where a passenger left behind by 
a bus leaves the system without any further waiting to make an alternative travel arrangement. 
Such reneging behavior is indicative of an infinite penalty associated with further waiting from a 
passenger viewpoint. Apart from the theoretical derivations for the various attributes of interest, 
numerical examples to analyze the system performance (such as expected number of passengers 
served, expected number of abandoned passengers, and expected amount of unused space on the 
transit system) are presented. This provides insights for optimum selection of fleet size and size of 
vehicles

INTRODUCTION

Two basic problems often faced by analysts of transportation systems are related to estimation of 
vehicle size and frequency of service. In the case of public transit systems, the use of smaller buses 
with a relatively high service frequency lowers the average waiting time and increases operating 
speed, but is not suitable for high passenger demand conditions as it costs more to operate per seat 
provided. On the other hand, comparatively larger buses are usually associated with lower operating 
cost to operators, but lead to low service frequencies and long average waiting time for passengers. 
From the operator perspective, it is desirable to use large vehicles that maximize productivity. From 
the passengers’ perspective, the frequency of service is the matter of concern. This poses a dilemma 
to transit designers in selection of service configuration to meet user needs and desired service levels 
in terms of service frequency.  

The analysis in this paper offers insights to the problem faced by transit system designers; 
namely with regard to fleet size as well as what should be the size of the vehicles that should be 
part of the fleet. To address this, a stochastic model using Markov Chain Technique is formulated 
for a bus transit system with multiple stops, where carriers with a regular headway serve all waiting 
passengers under a capacity constraint. Markov Chain is a method used to model sequential 
events of bus operation at a stop where randomly arrived passengers wait for a bus and board the 
bus depending on space availability after alighting of passengers. This paper sheds light on the 
performance of transit using the following metrics: number of passengers served by the system, 
number of passengers that were unable to use the service because of space unavailability, and 
number of unused space throughout the transit operations.

LITERATURE REVIEW

There were a number of studies performed on bus size and frequency related to urban public transport 
systems with the aim of improving system performance and enhancing efficiency.  

Jansson (1980) paid significant attention to operating cost and user cost while arguing that 
previous models underestimated user cost and overestimated operator cost. He proposed a model 
that minimizes total social cost, which includes operator cost, passenger waiting time, and travel 
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time during peak capacity conditions. He concluded that the vehicle size required to minimize social 
cost is smaller than the vehicle size found in practice, where the number of vehicles is set for a given 
vehicle size to achieve an average occupancy rate (the mean occupancy rate is the ratio of the mean 
passenger flow to the product of the service frequency and the bus size).  Oldfield and Bly (1988) 
provided an analytical model to determine optimal bus size, which considered elastic demand that 
is affected by trip cost.  They showed that the optimal size varies with the square root of demand 
and with the unit cost to the power of 0.1 to 0.2. In a case study in the United Kingdom for typical 
urban operating conditions, they found that the optimal bus size lies between 55 and 65 seats for a 
monopoly service. 

Jansson (1993) included the variability of value of time to optimize the vehicle size, frequency, 
and journey price simultaneously. However, because it required large amounts of data, this model 
was found to be difficult to implement compared with other models. Lee et al. (1995) developed 
a model that is able to find the bus size for different periods of day in addition to optimal bus size 
for each route. They also attempted to find suitable conditions to use one bus or alternative uses 
for a mixed-size fleet. They determined the threshold ratio of peak demand to off-peak demand for 
multiple-route operation is 1.92 and showed that mixed-fleet operation is preferable on multiple 
route operation in case of high variation in demand between peak and off-peak period. Rietveld et al. 
(2001) have extended Mohring’s (1972, 1976) basic “square root model” for frequencies and derived 
a general formulation under an alternative regime of welfare and profit optimization for frequency, 
vehicle size, and cost of building a railway system.  It was observed that in rail transport, the average 
occupancy rates were low. Chien (2005), with the objective to minimize total cost, developed a 
methodology integrating both analytical and numerical techniques to optimize headway, vehicle 
size and passenger route choice for a feeder bus service. The methodology is then applied to analyze 
a non-stop feeder bus service connecting a selected rail station and a recreation center (Sandy Hook, 
NJ). It was shown that the optimal fleet size is a function of the demand multipliers. If the demand 
multiplier is less than 0.7, the optimal fleet size is three buses. The optimal fleet size is four and 
five buses if the demand multiplier is between 0.7 and 1.1, and greater than 1.1 but less than 1.6, 
respectively. Dell’Olio et al. (2008) have presented a model to solve the problem of optimizing 
frequencies and bus size on a transit network consisting of 15 routes. They claimed that their model 
can designate different types of buses on each route taking into account the reciprocal influence of 
each route in addition to optimization of the capacity of the bus. However, their model differs from 
the more commonly held idea that smaller buses are more profitable in a majority of cases.

These earlier studies did not consider the situation where passengers are unwilling to wait 
for the next bus when they have been unable to board an earlier bus. The current study considers 
such situations, where buses are full, the transit operators lose a proportion of passengers. This 
deteriorates the level of service of the transit system. 

For the objective of estimating the expected number of passengers served by transit systems, 
allowing for lost passengers, a queuing theory technique known as the Markov Chain method has 
been applied. In queuing theory, serving more than one customer at a time is a case known as bulk 
service. The service capacity is referred to as variable capacity, as it is not the same at all instances 
of service. In a transportation system analogy, customers are passengers and servers are vehicles, 
respectively. Bulk service for a single station was first addressed by Bailey (1954) and Downton 
(1955) applying imbedded Markov Chain technique for a transportation system when the average 
number of passengers that can be served was constant. Jaiswal (1961) extended Bailey’s model for a 
series of stations where number of passengers served were not constant, rather based on the number 
of passengers waiting at a stop and vehicle capacity. Arguing that these models are very complex to 
solve and numerical answers to these models are difficult to find, Giffin (1966) developed a model 
for a transit system with a series of stations where the simplification was made in assuming there are 
no en-route departures of customers and all customers remain onboard the vehicle until it reaches 
the terminal. A. Grosfeld-Nir and Bookbinder (1995) and Lam et al. (2009) considered departure of 
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passengers from buses at on-route destinations but did not link with the performance measures of 
transit systems.  This paper demonstrates how a Markov Chain technique can be utilized to calculate 
numerical answers to a model bulk service transit system of multiple stops served by a fixed-size 
vehicle fleet. 

MODELING FRAMEWORK

This section presents a description of operation of a bus route and the associated notations along 
with the modeling framework used to evaluate performances of bus transit systems. 

Description of A Bus Route Operation

The operation of bus transit in a route that contains multiple stops is illustrated with the aid of the 
schematic diagram shown in Figure 1 (a) and Figure 1 (b). From the point of view of bus operation, 
empty buses are dispatched from the dispatch station and travel along the route allowing passengers 
to alight and board at stops. This process of serving, boarding, and alighting passengers continues 
stop after stop. The bus movement is presented as a trajectory diagram in Figure 1(a). The vertical 
axis shows the distance travelled by buses along the route stopping at designated bus stops, and the 
horizontal axis indicates the time. Inclined lines between two stops show bus travel from one stop to 
the next stop. Inclined lines between two stops show bus travel from one stop to the next stop. The 
dotted lines between two inclined lines show the time spent at stops allowing mainly for boarding 
and alighting of passengers. As shown in Figure 1 (b), there are five events related to passengers. 
These events are (a) passengers arrive at a bus stop, (b) passengers board a bus upon arrival if space 
is available, (c) passengers wait for a bus, (d) passengers leave a stop if space is not available, and 
(e) a bus departs with passengers for next stop.  

Figure 1 (a): Trajectory of Buses Along a Route for Regular Headway of Buses
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Figure 1 (b): 	 Schematic Presentation of Dynamic Interaction Between Bus and Passengers
	 at Stops 

Assumptions

The following assumptions are made in the model formulated to describe the bus operation in Figure 
1(a). 
a)	 Operational:

•	Bus size: Buses dispatched in this service are assumed be of the same size.
•	Service process: Buses serve passengers up to their passenger capacities after passengers alight 

from bus at given stop. If there is no passenger boarding at a stop, buses skip the stop. It should 
be noted that no time stop is considered here.

•	Capacity of stop: The capacity of the bus stop to accumulate arriving passengers is assumed 
to be infinite. 

•	Time table: To simplify the model, buses are assumed to arrive at stops according to a fixed 
timetable and early or late arrivals of buses are not allowed. 

•	Headway of bus:  Bus headways are assumed to be less than 12 minutes to justify the 
adoption of random arrival of passengers at stops. Evidences from several empirical studies 
demonstrated that this assumption is reasonable.   Jolliffe and Hutchinson (1975) provided a 
behavioral explanation of the association between bus and passenger arrivals at a bus stop. 
They presented passenger arrival pattern in three categories: (i) proportion of passengers 
(q) arrive coincidentally with the bus (see and run to stop), (ii) proportion of passengers 
(1-q) who arrive at stop at optimal time based on published timetable and experience, and 
(iii) proportion of passengers (1-q)(1-p) who arrive randomly.  Bowman and Turnquist 
(1981) used the term “unaware” of schedule for the passengers who arrive at stops randomly.  
Moreover, they reported that 12 to 13 min. headways is transition from random to coordinated 
passenger arrivals at stops as concluded by Okrent (1971). O’Flaherty and Mangan (1970) also 
suggested 12 min. in Leeds as the transition. Furthermore, Seddon and Day (1974) showed 
by empirical research that passengers arrive at stops randomly for headway at less than 10-12 
minutes. Fan and Machemehl (2009) identified 11-minute vehicle headway as the transition 
from random passenger arrivals to non-random arrival.
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•	Number of alighting passengers: No passenger disembarks from a bus at the first stop, as the 
bus arrives empty at the first stop. At other stops, except the last one, the number of alighting 
passengers depends on the arrival occupancy. Passenger alighting probability is assumed to be 
the same during the period of study. Passenger behavior is assumed to be independent of each 
other. Thus, the number of alighting passengers at each stop is assumed to follow a binomial 
distribution as suggested by Andersson and Scalia-Tomba (1981). At the last stop, all on-board 
passengers alight to ensure the bus is empty.  

•	Alighting and boarding process: It is assumed that boarding of passengers on a bus starts after 
the completion of alighting of passengers. A fraction of onboard passengers alight upon arrival 
at a stop according to the above assumption. Also, a bus picks up all passengers while adhering 
to a capacity constraint. 

•	Boarding and alighting times: For simplicity, boarding and alighting times are assumed to be 
negligible. 

•	Travel time: Travel time between stops is assumed constant and remains unchanged during the 
operation period. 

b)	 Demand :
•	Arrival of passengers: It is assumed that passengers arrive randomly at a stop according to a 

Poisson process. The number of passengers waiting is a function of passenger arrival rate at a 
stop and the time interval between two consecutive arrivals of buses. Furthermore, passenger 
arrival at one stop is independent of arrivals at any other stop.  It is assumed that passenger 
demand does not change over the period of interest.   

•	Passenger waiting behavior: It is assumed that an alternative mode of transportation is available 
for “impatient passenger.” An impatient passenger is defined as a person reluctant to wait for 
another bus when he/she is denied entry to the first bus to arrive due to inadequacy in space. 
Hence, passengers rejected to be served by the next bus are considered lost from the system. 

This kind of model can be an approximation for transit operators serving suburbs where the 
population may have a low tolerance to waiting time. For example, passengers who look for an 
alternative mode of transportation to be on time at work during rush hour (i.e., 6.00 am to 9.00 am) 
can be considered impatient passengers. Also, this analysis can be viewed as a particular situation 
of a large system where there is substantial one-way traffic from suburban areas to the city center. 
Another scenario where the analysis applies is when passengers wait for a bus on a street just outside 
their homes (where they have a personal auto immediately available). If the bus has no capacity to 
accept passengers, then they would travel by their autos.
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Notations: The following notations are adopted in the formulations

Table 1: Notations

N Total number of stops
V Number of buses provided per hour
n Index number of stops to be served

λn Passenger arrival rate at stop n

Alighting proportion of passengers at stop n

Hn  Headway of bus at stop (i.e., Time between two consecutive buses at stop n)

xn  
 Number of passengers on bus leaving stop n

Probability of j number of passengers on a bus leaving stop n 

Distance between two stops n and n+1

C Bus size in terms of seats and standing passengers allowed

nkg

Probability that k passengers arrive at stop n in the time interval of Hn and given by

!
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k
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Mathematical Formulation for the First Stop

Important performance measures for a bus transit system can be developed from the probability 
distribution of space available on buses as they progress along a fixed route. This probability 
distribution can be obtained by carefully monitoring the four events mentioned in the previous 
section. 

Consider Pn as the probability vector of number of onboard passengers on a bus leaving stop 
n and pin  indicates each element of the vector where value of i ranges from 0 to C. This means the 
probability vector  Pn  has C+ 1 element, which can be represented as (p0n , p1n , p2n.........pCn).

The first stop, the first entry of the probability vector, p01, indicates the probability of no 

onboard passenger when the bus leaves stop 1. For example, in this particular case of stop 1, when 

no passenger arrives between the two consecutive buses, there will be no passengers waiting, and 

therefore no passengers will be onboard after stop 1.  Thus, the probability of no passenger arriving 

at the stop, (or probability of no onboard passenger in the bus departing the first stop) can be derived 

as nnnn HnnH e
H

eg λλ λ −− ==
!0

)( 0

01 . Other entries p11 , p21.............pC-1,1 can be found in a similar way by varying 

the value of k from 1 to C-1 in the expression 
  

respectively. The last entry, pC1, 

can be found by simply applying total law of probability as   or by summing the 

probability of passenger arrivals as ,  since no passengers alight at the first stop, the 

probability vector of the number of onboard passengers leaving the first stop  p1 can be found as 

follows:

njp
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(1) 

Since passengers can alight at stops other than the first, the method to find the 
entries of the probability vector of onboard passengers on the buses at other stops 
p01 , p11 , p21 ,......... ...., pC1  is different from above and is discussed in the next section.

Mathematical Formulation for the Second and Subsequent Stops

When a bus approaches the second stop, the number of available spaces in the bus is reduced by the 
number of passengers picked up at the first stop.  However, the number of available spaces on the 
bus at the second stop can increase if one (or more) onboard passengers alight at the second stop. 
Then the waiting passengers at the second stop are allowed to board the bus until the bus is full. 
Passengers left behind in the event of inadequate capacity are considered lost from the system, as 
mentioned earlier. Since passenger arrivals at stops and alighting are random, passenger boarding 
and alighting at a stop can be modeled as a stochastic process. Thus, there are two sets of probability 
arrays required to describe the algebra related to transit route operation: 

i.	 A probability vector representing the number of onboard passengers at a stop after the 
alighting process has completed.

ii.	 A probability vector representing the number of onboard passengers at a stop after the 
boarding process is completed.

Details of these vectors are described below:  

Probability vector representing the number of onboard passengers at a stop after the alighting 
process has completed upon arrival at the second stop. If there are i passengers on board a bus 
approaching the second stop, the state of the process is defined as Ei . Here, i could be any value 
between 0 to C, i.e., there will be a possibility that there are no onboard passengers, only one 
passenger on board, two passengers on board, three passengers on board, and up to a maximum of 
C number of passengers on board the approaching bus. If any of the passengers alight at the second 
stop and there are still some of the j passengers remaining on board, the state Ei will be changed to 
Ej . In other words, the process makes a transition from state Ei  to state Ej . This transition can be 
represented by a “Transition Probability Matrix,” which is described further.  

Now, let us consider, An is a one-step transition matrix related with alighting of passengers on a 
bus arriving at stop n and ɑij n  is the cell entry for row i, column j of the matrix An. The ɑij n represents 
the conditional probability that j passengers will remain on board after (i-j) number of passengers 
alight at stop n.  In other words, the conditional probability that j number of passengers will remain 
on board after alighting at stop n given that the bus approached from stop (n-1) to stop n with i 
onboard passengers. These quantities can be denoted as A2 and ɑij 2 for the second stop.  In the event 
of a bus approaching the second stop empty, i.e., there are no onboard passengers approaching the 
second stop, probability of alighting zero passengers is one.  Thus, the first entries in the first row of 
matrix A2, ɑ00 2 is 1 and  0 for other entries in the first row. 

If (i-j) passengers alight at the second stop, i onboard passengers will be reduced from i to j. If the 

fraction of onboard passengers alighting at the second stop is d2 , then (d2)
i-j

 is the probability of (i-j) 

passengers alighting at the second stop and (1 – d2)i-(i-j) = (1 – d2) j
 is the probability of not alighting 

(i-j) passenger at the stop. According to the principle of binomial distribution,   
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is the probability of alighting (i-j) passengers from i number of onboard passengers at stop 2. Then, 

for i  j, the entries for ɑij 2 
are .  Since, a transition from i onboard passengers 

to some number greater than j is not possible; thus, for i < j, the entries for ɑij 2 are zero.
Let us consider 2P′  is the probability vector of onboard passengers after the alighting process 

has completed at the second stop, then  2P′  can be readily obtained by multiplying P1  (the probability 
vector of onboard passenger departing the first stop) by A1 (transition probability matrix of passenger 
alighting at the second stop), i.e., 112 APP =′ .

Probability vector representing the number of onboard passengers at a stop after the boarding 
process is completed: When the alighting process at the second stop is finished, if space is available, 
the bus is allowed to pick up waiting passengers. If, after the alighting process, there are k passengers 
remaining on board, the process is said to be in state Ek . Here, k could be any value between zero to 
C, i.e., there is also a possibility of having onboard passengers anywhere from zero to a maximum 
of C that remained on board the bus. Additional boarding of passengers transforms the state from Ek 
to El . Therefore, another transition probability matrix is defined whose elements are the conditional 
probability that (l-k) number of waiting passengers at the second stop are allowed to board the bus 
given that the bus already has k onboard passengers after the alighting process has finished. Now, 
consider Bn 

 as a one step transition probability matrix associated with waiting passengers boarding 
at bus at stop n (n2) and bkl n as a conditional probability that (l-k) new passenger will board the bus 
given that it has already k passengers on board after the alighting process has finished. This is the 
cell entry for row k, column l of the matrix Bn .

In general, k passengers on board the bus will go to l, if (l-k) new passengers board the bus 

at the second stop. If  λ2 is the arrival rate of passengers at the second stop, then the probability of 

arrival of (l-k) passengers is .  Hence, the entries of the matrix B2 for each 

bus is given by, 

(2)

                    
In addition, for a bus the transition from k onboard passengers to a number lesser than k is 

clearly impossible. For this reason, bkl 2 = 0 for l < k.
The probability vector of onboard passengers in a bus leaving the second stop  (denoted by 

p2) can be readily obtained by multiplying p2 (the probability vector of onboard passengers after 
completion of passenger alighting at the second stop) and B2 (the transition probability matrix of 
passengers boarding at the second stop), i.e., . 

Since the system is Markovian, using the Chapman Kolmogorov Equations (Ross 2003), the 
probability vector for the number of onboard passengers in the bus at any stop n, Pn  for n1, can 
be found as pn = pn-1AnBn . In such an approach, the probability statements regarding the onboard 
passengers leaving a stop can be derived.

PERFORMANCE MEASURES

Once it is possible to calculate the probability vector of onboard passengers leaving a stop, then it 
is easy to calculate the number of passengers served, number of lost passengers, the load factor, and 
the unused space on a bus along a route. These performance measures are derived below.
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Expected Number of Passengers Served Along a Transit Route

The revenue earned by transit operators mostly comes from the number of passengers. Therefore, the 

expected number of passengers served along a complete transit route is an important performance 

measure. To evaluate this measure, the expected number of passengers remaining on a bus at a stop 

after alighting of others can be found as   .  xn is the number of onboard passengers on 

a bus leaving stop n. It ranges from zero to C.  Since passengers are allowed to board the bus after 

the alighting process has ended and the bus leaves the stop, the expected number of passengers 

on a bus leaving a stop is   . Hence, it is possible to find the expected number of 

passengers served at a stop from the difference between these two quantities, i.e., expected number 

of passengers served per bus at stop n, 

(3)                                                                                      

This expression gives the expected number of passenger served at an individual stop. The 

number of total served passengers (TSP) per bus along a transit route can be calculated by summing 

the number of passengers served at each individual stop as  .

Expected Number of Abandoned Passengers Along a Transit Route

For any given configuration of transit systems, the number of passengers unable to board a bus 
due to shortage of spaces is another measure of effectiveness. On average, the system will be in 
equilibrium in that the expected number of passengers arriving for service by each bus at a stop will 
be the sum of the number of passengers served at a stop and the expected number of passengers 
turned away from a stop. i.e., 

Expected number of passengers requesting service at a stop = Expected number of passengers served 
at a stop + Expected number of abandoned passengers at a stop.

(4)	 Expected number of abandoned passenger per bus at a stop, 
	                          E(Abn) = λnHn — E(Sn)

This expression provides the expected number of abandoned passengers at an individual stop 

among the system of N total stops. The number of total abandoned passengers (TAP) per bus along a 

transit route can be calculated by summing the number of passengers lost at each individual stop  as 

.
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Number of Total Unused Capacity in Bus Along a Transit Route

When service demand  is low compared with the supply, some bus spaces  remain unused during the 
service period, and transit operators can calculate the amount of unused capacity in buses defined 
as the capacity remaining after the passenger boarding process is finished and buses begin leaving a 
stop. These unused spaces can be calculated by subtracting the number of passengers onboard from 
the bus size, i.e.

(5)  E(Un) = C — E(Sn)                                                      

 In the case of a bus fully congested, no unused spaces are left, i.e, number of unused spaces on 

bus is zero. The number of total unused capacity (TUC) per bus along the complete route can be 

found by summing the expected unused spaces in buses at each stop as  .

Moreover, the variance of these measures can be calculated at each stop as follows:
(i)	 Variance of served passengers per bus at stop n  

(6)                      

 

                            

(ii)	Variance of abandoned passengers  per bus at a stop:     

(7)                                                                                            

Work Utilization Coefficient

Another performance indicator namely “Work Utilization Coefficient (WUC)” is adopted from 
Vuchic (2005) as the output or quantity of offered or utilized service on a transit line expressed as 
“transportation work W”. When all buses of a fleet run on entire lengths of routes, offered work W0, 
expressed in space-kilometer during one hour is:

(8)                                                                     

Passenger-kilometer traveled along the transit route is called Utilized work Wu. The procedure 
to calculate this value is shown below.

Let us consider a matrix, “passengers-kilometer matrix,” denoted by PK of dimension (m×n) 
is constructed, where m is the origin stop of a passenger and n is destination stop and pkmn is the 
element of passengers-kilometer matrix indicates the value of passenger-distance travelled from 
origin stop m to destination stop n where m =1, 2…..N and n = 1, 2, 3……N. The matrix PK can be 
presented as follows:

(9)          
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Formulation of each element of the matrix PK is explained here. In general, no passengers 
alight at the same stop they board the bus. This formulation neglects those passengers who board in 
error and cannot get down at the same stop. Thus, the entries in the main diagonal of the matrix PK are zero, i.e,  pkmn = 0; for m = n. Furthermore, since it is obviously impossible that the numerical 
value of a destination stop n less than the origin stop m, the entries below the main diagonal are zero. 
i.e, pkmn = 0; for m > n.

In the event of passengers alighting at a stop immediately after their origin stop, the passenger-
distance travelled can be found straightforwardly by multiplying the distance between two stops (Le) 
by number of passengers alighting at the stop. Number of passengers alighting can be calculated 
by multiplying the onboard passenger in a bus leaving the origin stop E(Sm) by the alighting 
proportion at the destination stop dn. Thus, for n= m+1 and n  N, the entries of the matrix PK are 
E(Sm)dm+1Lem for n= m+1 and n  N.

In the case of a passenger alighting at a stop other than that immediately following the origin 

stop, the entries are  for m + 1 < n < N.  Then, total passenger-kilometers 

(TPK) can be found by summing all the elements of the PK matrix as follows:   

(10)                                                        

Now, WUC can be defined as the ratio of utilized work to the offered work as per Vuchic (2005) 
as:                                                

(11)                                       

Ratio of Lost Work to Demanded Work (Lw/Dw)

A performance measure, the “Ratio of Lost work to Demanded work (Lw/Dw)” (Islam et al. 2014), 
is used to investigate the effect of bus size and frequency of service on the performance of a transit 
system. Here, “Demanded Work (Dw)” is defined as passenger-km that is demanded by passengers 
to travel along a route based on their origin and destination.  However, some passengers may leave 
the system in case of space unavailability on the bus without further waiting. The passenger-km 
anticipated by abandoned passengers is termed as “Lost Work (Lw).”  Thus, the ratio of lost work 
to demanded work (Lw/Dw) reflects the amount of lost transportation work in relation to demanded 
transportation work that awaits for service in the system. Mathematically, the demanded work can 
be found by replacing E(Sm) by E(λmHm) (i.e., number of arrivals at stop m between two consecutive 
buses) in Equation 12 as follows:

(12)                   

Similarly, the lost work (Lw) can be found by replacing E(Sm) by E(λmHm) (i.e., number of 
abandoned passengers at stop m per bus) in Equation 13 as follows:

(13)       



Performance Evaluation of Public Transit

34

The term “Ratio of Lost work to Demanded work (Lw/Dw)” is used here to investigate the 
adequacy of supplied capacity in response to demand for service, whereas the term “Work Utilization 
Coefficient (WUC)” indicates utilization of supplied capacity to the system. Analytically, the higher 
the value of the ratio Lw/Dw reflects the higher amount of lost transportation work and vice versa. For 
the hypothetical bus route presented in the fifth section, the values of WUC and Lw/Dw for different 
sizes of buses against service frequency is shown in Figure 4.

NUMERICAL EXAMPLES

The way in which a transit system designer can use the developed model is illustrated here by a  
series of examples. The impacts of simple policy decisions are also described. A numerical example 
is presented using the same demand data from Hickman (2001).  Suppose an operator wants to 
examine the role of bus size and number of buses on a route with 10 stops, where each stop has 
infinite waiting room and stops are equally spaced. It is assumed that passengers arrive at all stops 
following the Poisson distribution with mean arrival rate specified in column 2 of Table 2. Table 2 
also shows the proportion of passengers who alight at stops. Since empty buses start their journeys 
from the first stop, no passengers alight there. However, passengers alight at the second through the 
ninth stop, if these are their destinations and all remaining passengers alight upon the arrival of a bus 
at the tenth stop.  To investigate the role of bus sizes on transit system performance,s bus capacity 
is increased in a stepwise manner from 20-passenger bus to 60-passenger bus. In addition, the bus 
headways are assumed to be less than 12 minutes as mentioned earlier.  In this analysis, bus capacity 
includes standing passenger spaces and available number of seats. With such a fixed configuration, 
a transit designer will be confronted with two basic problems, determining bus size and fleet size.   

Table 2: Parameters of Example Bus Route (Hickman 2001)

Stop
Arrival Rate

(passenger/minutes)
Alighting
Proportion

1 0.75 0
2 1.5 0
3 0.75 0.1
4 3 0.25
5 1.5 0.25
6 1 0.5
7 0.75 0.5
9 0 0.75
10 0 1

Numerical analysis of performance measures of the transit system with respect to passengers 
served by the system and those abandoned due to unavailability of space on buses as a function of 
different service frequencies are shown in Figures 2 and 3.

Based on the figures, it is observed that the number of passengers served by the system increases 
as the bus size and frequency increases. This also implies that as the bus size and frequency increase, 
the number of abandoned passengers decreases. However, unused capacity increases with an 
increase in bus size and frequency. This suggests that when a transit agency runs large buses, the 
number of passengers that can be accommodated on the bus increases for a given service demand, 
and cuts down the number of abandoned passengers.



35

JTRF Volume 54 No. 3, Fall 2015

Figure 2: Passengers Served Per Hour by Different Sizes of Buses Against Service Frequency
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Figure 3: 	Abandoned Passengers per Hour by Different Sizes of Buses Against Service 
	 Frequency
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Figure 4 (a):	Work Utilization Coefficient for Different Sizes of Buses Against Service 
	 Frequency

Figure 4 (b):	Ratio of Lost Work to Demanded Work for Different Sizes of Buses Against 		
 	 Service Frequencies 
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The utilization of system capacity is shown in Figure 4 (a) and (b) using the WUC and the 
ratio of lost work to demanded work (Lw/Dw), respectively. It is observed that both WUC and Lw/
Dw decrease with increases in bus size and frequency. A decrease in Lw/Dw indicates that the amount 
of lost work will be reduced if large sizes of buses with higher frequency are supplied [Figure 4 
(b)].  However, in such cases, WUC will be reduced [Figure 4 (a)] indicating lower utilization of 
systems, which is not desirable to transit operators. Thus, the problem of the transit system designer 
is to select the appropriate total system capacity, which trades off between bus size and frequency. 

Figure 5: Comparison of Policy to Examine System Behavior by Providing a Few Larger 		
	 Buses or Number of Smaller Buses 

Figure 5 shows the trade-off between providing larger or smaller buses as a function of spaces 
supplied per hour to the system.  If it is assumed that the transport planner has the freedom to use 
any number of buses of a particular size, then the same level of system capacity can be achieved by 
providing a small number of large buses at a smaller frequency or a large number of smaller buses 
with a high frequency. For example, a total system capacity of 100 spaces per hour can be supplied 
by five 20-passenger buses per hour. The effect of such policy choice is explored graphically using 
the numerical example in Figure 5. It is observed that there is a smaller number of abandoned 
passengers as well as lower unused capacity when there are a smaller number of large buses as 
compared with a larger number of small buses. Therefore, it can be said that under the assumptions 
made here, the best operating strategy is to select the largest bus size. Moreover, in Figure 5 the 
intersection points between the curves representing unused capacity and abandoned passengers 
seem that they should indicate a “best” policy for this application. That is, they identify several 
“optimal” points with respect to unused capacity and abandoned passengers. Looking at this figure, 
supplying between 125 and 140 capacity per hour would result in an optimal trade-off between 
unused capacity and abandoned passengers. Hence, this figure indicates possible strategies for 
selecting bus sizes based on unused capacity and abandoned passengers. Thus, it can be viewed as 
a simple application of the proposed models.
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Figure 6 (a): Standard Deviation of Passengers Served Per Bus by Different Sizes of Buses 
	 Against Service Frequency at Stop 5

Figure 6 (b): Standard Deviation of Abandoned Passengers per Bus for Different Sizes 
	 of Buses Against Service Frequency at Stop 5
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In addition to the above performance measures, transit operators are interested in the variance 
of passengers served, as well as the variance of abandoned passengers as performance indicators. 
Figure 6 (a) and 6 (b) show the variance of served passengers and variance of abandoned passengers 
for different sizes of bus and frequency at stop 5, which is the stop with maximum load on the route.

Figure 6 (a) shows that for a 20-passenger bus, the variation of served passengers at this stop is 
zero for frequencies between five to 17 buses per hour. This indicates that a 20-passenger bus will be 
full with respect to its carrying capacity, and passengers will be abandoned during the operation for 
most service times. Similarly, zero variance of served passengers for other bus sizes and frequencies 
signifies inability to satisfy passenger demand along the route.  The figure shows that there is a point 
for each bus size after which the variance of served passengers decreases with an increase in bus 
frequency. Figure 6 (b) shows that variance of abandoned passengers decreases with the increase in 
bus size and frequency. The lower variance of abandoned passengers indicates the high probability 
of receiving transit service and vice versa.  

CONCLUSIONS 

In this paper, passenger reneging behavior is modeled in relation to bus sizes and frequencies used 
in transit operation. Passengers are described as “impatient” when they leave stops without further 
waiting, once they are unable to board a bus due to capacity constraints.  This behavior can be seen as 
an approximation of a particular situation where substantial one-way suburban commuters look for 
an alternative mode of transportation at rush hour to be on time at the workplace. Another situation 
where this analysis applies is the possibility of balking when a passenger waiting for a bus on a street 
outside his/her home has a vehicle ready to use in case of inability to board the preferred bus.  Using 
the Markov Chain technique, the stochastic elements of the bus transit system and its performance 
measures are derived. This model is then demonstrated using numerical examples to illustrate the 
impacts on transit policy. This model can be viewed as a simplified means to evaluate transit system 
performance under different levels of supply and demand. This simplified model is able to provide 
practitioners quantitative insights to problems regarding vehicle sizes and frequencies quickly and 
effectively.  
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Traffic Impact Analysis (TIA) and Forecasting 
Future Traffic Needs: Lessons from Selected 
North Carolina Case Studies
by Srinivas S. Pulugurtha and Rakesh Mora

The focus of this paper is to conduct an evaluation of selected traffic impact analysis (TIA) case 
studies, review current practice, and recommend procedures that could be adapted to better forecast 
and plan future traffic needs. Lessons from the evaluations indicate that considering regional traffic 
growth rate, peak hour factor (PHF), heavy vehicle percentage, and other off-site developments 
would yield relatively better TIA forecasts. Incomplete development with vacant parcels was 
observed at several case sites, possibly due to the state of the economy. Therefore, conducting 
analysis assuming multiple “build out” years (say, three and five years based on the magnitude of 
the development) as complete build out years would help state and local transportation agencies 
plan and better allocate resources based on the need.

INTRODUCTION

Growth in population has led to increased travel demand that rapidly exceeded the designed 
capabilities of roads, leading to record levels of congestion (USDOT 2015). Long-term projections 
indicate that population, passenger-miles traveled, and traffic congestion are expected to continue 
rising (Cambridge Systematics, Inc. 2004). State and local transportation agencies are increasingly 
motivated to understand the impact of this growth and need to improve methods used in estimating 
future traffic conditions (CNT 2012).

Past studies primarily focused on the benefits of treatments pertaining to operational and safety 
performance of roadways near new developments (Levinson et al. 1996; Vargas and Reddy 1996; 
Parsonson et al. 2000; Bared and Kaisar 2002; Dissanayake and Lu 2003; Eisele and Frawley 
2003; Eisele et al. 2004). However, the literature documents no formal evaluation to determine 
if the improvements and access scenario for new developments provided the traffic operational 
outcomes that had been forecasted in TIA studies before implementation. The difference in “what 
was forecasted to happen?” and “what is happening right now?” could be attributed to aspects such 
as incomplete or delayed development, using default peak hour factor (PHF) - defined as the ratio 
of peak hour traffic volume divided by four times the peak 15-minute traffic volume (Roess et al. 
2004), using the default heavy vehicle percentage, and considering the traffic growth rate that may 
not be applicable to that area. Also, no research was done to analyze and evaluate the effectiveness 
of the methods used in TIA studies and suggest procedures to improve accuracy of the forecasts.

Most of the TIA guidelines provided by state and local transportation agencies incorporate 
adjacent traffic growth. However, inaccurate growth numbers would not yield precise results. 
Moreover, examining possible causes of traffic problems due to the off-site developments would 
help better identify appropriate solutions to serve traffic.

Traffic volume, delay, and level-of-service (LOS) are the measures of effectiveness (MOEs) 
typically considered in TIA studies. Considering other MOEs, such as the number of stops and 
50th percentile queue length, would not only provide more insights on operational performance 
of intersections but also help in identifying suitable and appropriate solutions to improve traffic 
performance (e.g., use reduced signal cycle length or increase the number of left-turn lanes if queue 
length for left-turn traffic of an approach is very high). These MOEs typically are provided as 
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outputs by Synchro® (Trafficware 2013) traffic simulation software, which is normally used by 
consultants in TIA forecasts.

Treatments such as traffic signals and additional lanes are used to reduce delays and crash risk at 
such locations by managing driveways, turning movements, and median openings between the two 
travel directions. These treatments not only help reduce the number of conflict points on roadways 
but also ensure a smooth flow of traffic. Though there is an improvement in traffic operation at 
intersections with such implemented treatments, it could affect the operational performance at 
adjacent intersections along the corridor. The literature documents no research on examining the 
effect of TIA recommendations at intersections adjacent to new developments.

The forecasted LOS outcomes from the TIA reports are often the sole basis for driveway (and 
even rezoning and site plan) approvals. Consequently, decision makers continue to authorize and 
conduct business on a preliminary study without detailed knowledge concerning the interim or 
ultimate performance of the development that accessed the road network. This often results in state 
and local transportation agencies re-engaging themselves in a defensive and re-active posture, 
investing limited funds to fix operational and safety problems following the opening of a major 
development (shopping centers, activity centers, power centers, schools, and other traffic generators) 
or a subsequent phase of a major development. Therefore, there is a need to research and evaluate 
the effectiveness of operational improvement treatments such as increasing driveway/intersection 
spacing, limiting median openings, adding new traffic signals, and adding turn lanes that are typically 
recommended in the TIA study. Lessons and the outcomes will be useful in addressing operational 
problems not only at new residential and commercial developments but also in retrofitting existing 
locations based on identified issues.

The objectives of this research paper are: 1) to conduct an evaluation of selected TIA case 
studies and 2) recommend  a procedure (based on lessons learned) that could be adopted to conduct 
similar review assessments for flagged or random sites in the future so as to improve operational 
performance. Further, this research aims to find answers to questions such as:
1.	 What was expected to happen and what is happening now?
2.	 Which evaluation methods need to be adopted so as to yield better forecasts?
3.	 How do the TIA recommendations affect operational performance at intersections near and 

adjacent to the development?
4.	 What are the most/least effective treatments that would help improve traffic operations at TIA 

sites?
The answers to the above questions (findings from this research) will help state and local 

transportation agencies adopt accurate methods and implement treatments that benefit the 
transportation system users. The outcomes from this research are expected to contribute to significant 
business improvements and yield improved knowledge and practices with regard to what works, 
what does not work, and what departments of transportation (DOTs) or local transportation agencies 
can do to improve operational performance of roadways.

LITERATURE REVIEW

A TIA study assesses the impact of a proposed development on its street network depending on the 
characteristics of the development. The study provides recommendations to mitigate the negative 
impact of the development and also to enhance the performance of the road network surrounding 
the development. Edwards (Unknown Year) outlined the major benefits of a TIA study. They are 
listed as follows.
1.	 Forecast additional traffic and distribution/assignment associated with the new development 

based on acceptable local practices.
2.	 Determine the improvements/modifications/restrictions that are necessary to accommodate the 

new development.
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3.	 Assist communities in land use decision making and in allocating scarce resources to areas that  
need improvement.

4.	 Identify potential problems with the proposed development that may influence a developer’s 
decision to pursue it.

5.	 Reduce the negative impact of a development and ensure that the transportation network can 
accommodate the development.

6.	 Provide direction to community decision makers/developers of expected impacts and protect 
the community investment in the street system.
Not performing a TIA study may lead to failure in estimating the impact of development, which 

in turn can increase the number of conflicts, delay, and reduce the LOS on the roads. Similar to 
symptoms of poor access management (Stover and Koepke 2000), increase in crash rates, poor 
traffic flow, numerous brake light activations by drivers in the through lanes (indicators of delay 
and stops), increase in congestion, unaesthetic strip development, and neighborhoods disrupted by 
traffic and pressure to signalize more locations, widen an existing street, or build a bypass are some 
of the ill-effects observed in absence of an appropriate TIA study.

Analytical methods and operational tools are important to solve traffic engineering problems 
due to their efficiency in modeling and simulating real-world data and traffic performance. Some 
of the tools that are used to analyze various traffic facilities and scenarios are TRANSYT-7F™ 
(Wallace et al. 1984), CORSIM™ (FHWA 1996), Synchro® (Trafficware 2013), and VISSIM (PTV 
2014). Bared and Kaisar (2002) used TRANSYT-7F™ and CORSIM™ to determine optimum signal 
setting and to represent geometric designs with variation in traffic flow at an intersection. Eisele 
and Frawley (2003) used VISSIM to quantify travel time, speed, and delay along the corridors. 
Synchro® was used to optimize the signal timings and results were incorporated into VISSIM for 
evaluation of the model in their study.

Muldoon and Bloomberg (2008) of the Oregon Department of Transportation (ODOT) suggested 
vital recommendations for the TIA process. The recommendations included more attention to the 
selection of apt land use code from the Institute of Transportation Engineers (ITE) Trip Generation 
Manual (ITE 2012), assumptions pertaining to pass-by trips (not produced or attracted to the 
development), seasonal variation of traffic, evaluation of alternate modes of transportation, traffic 
growth rates in the concerned area, future/horizon year analysis, and safety analysis. The study did 
not include any discussion on methods or tools for improved forecasts.

Treatments are typically recommended in TIA studies to accommodate access, improve traffic 
operations, and minimize the impact of the proposed new development. They include installing 
traffic signals, median treatments, adding lanes (left, right, and other), and unsignalized access 
points.

Traffic signals account for most of the delay experienced by motorists on the road network 
(Levinson et al. 1996). A traffic control signal should not be installed unless an engineering study 
indicates that installing a traffic control signal will improve the overall safety and/or operation of the 
intersection (FHWA 2003). Closely spaced signals along a corridor result in increased travel delay, 
frequent stops, and increased fuel consumption with excessive vehicular emissions.

Median treatments, between both travel directions, are considered as one of the most effective 
practices, as they play a vital role in controlling operational and safety aspects on roadways. 
Pedestrian and vehicular safety can be improved through the use of medians. They are generally 
classified into three types (TRB 2003): undivided median, two-way left-turn lanes (TWLTL), and 
raised median.

Widening roads is generally expected to improve the operational performance, and hence, often 
a very common recommendation in the TIA studies. Dunay et al. (2000) observed counter-intuitive 
results that adding lanes makes traffic worse. Their article documented the suspected paradox that 
the highways built around New York City in 1939 were generating greater traffic problems than 
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those that existed prior to 1939. Moreover, they mentioned that adding lanes or even double-decking 
the roadways would have no more than a cosmetic effect on traffic problems.

Unsignalized access points increase the number of conflicts on driveways. These conflict points 
slow down vehicles and even increase crash rates, especially where left turns must cross two or 
more lanes of opposing traffic. As stated in AASHTO (2001), driveways are effectively the same 
as intersections and should be designed consistent with their intended use. The numbers of crashes 
are disproportionately higher at driveways than at intersections; therefore, their design and location 
merit special consideration.

Overall, the literature documents articles and reports on TIA recommended treatments and 
operational/safety effects due to the implementation of these treatments. No research or documented 
evidence was found on the evaluation of both the effectiveness of TIA reports and operational 
performance of adopted recommended treatments. Addressing questions such as “what was expected 
to happen and what is happening now?” and comparing the two will serve as valuable inputs when 
conducting future TIA studies. In addition, developing and using accurate and proven methods to 
forecast the effects will help make better decisions and contribute to improved transportation system 
performance.

RESEARCH METHOD

The research method adopted involves the following four steps:
1.	 Select TIA case studies
2.	 Identify measures of effectiveness (MOEs)
3.	 Collect data
4.	 Conduct operational evaluation using selected methods
5.	 Analyze effectiveness of treatments

Select TIA Case Studies

The focus of this step is to identify TIA case studies for evaluation such that they are geographically 
distributed throughout the state of North Carolina. They also should represent different levels of 
urbanization (urban and suburban areas) and land use within their vicinity.

Identify Measures of Effectiveness (MOEs)

MOEs pertaining to operational aspects of a roadway (such as stops, queue length, delay, and 
LOS) are selected and used to conduct analyses of data and evaluate the effectiveness of forecasted 
methods. The LOS categories are defined as follows (TRB 2010).

Intersection Delay (sec/veh)		  LOS
≤10				      A
> 10-20			     B
> 20-35			     C
> 35-55			     D
> 55-80			     E
> 80				      F

Collect Data

Published TIA reports (based on studies conducted prior to the construction of the development) 
comprising operational data (traffic volume, stops, queue length, delay, and any other appropriate 
data) “before” construction of the development and forecasted “after” construction of the 
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development were collected for each selected case study. These reports also have details of future 
traffic conditions with and without the development, and whether the existing system will be able to 
accommodate the additional traffic generated by the development at the site.

In addition, traffic volume, the number of stops, queue length, and delay along with geometric 
conditions were collected to represent conditions during the “build” condition (year) at the selected 
intersections (or locations) near each TIA site. Due to resource limitation, the number of stops, 
queue length, and delay were only collected for left-turning traffic and through traffic, while traffic 
volume and geometric conditions were captured for the entire intersection. The exclusion of  queue 
length and delay for right-turning traffic was not expected to have notable effect on the considered 
MOEs as right-turning vehicles (generally low in number) are allowed to turn right on red at more 
than 99% of signalized intersections in North Carolina.

The day of the week and durations for data collection were determined based on the duration of 
data collection used in collected TIA reports. Accordingly, data were collected for one day during 
the morning peak hours (7 am - 9 am) and evening peak hours (4 pm - 6 pm) in this research. Trained 
observers were used to collect the data in the field. Both manual and video data collection methods 
were adopted.

Conduct Operational Evaluation Using Selected Methods

The evaluation of operational performance and forecasting methods was conducted using three 
different methods. Traffic volume, geometric conditions, and MOEs for “no build” condition and 
forecasted for “build” condition are from TIA reports, while MOEs computed using traffic volume 
and geometric condition data collected during the study year (2009) for the “build” condition are 
from this research effort.  The PHF, heavy vehicle percentage, traffic growth rate, and current signal 
timing information specific to the intersections at the site were used to compute MOEs in this 
research. Default driver and vehicle related characteristics were used for analysis.

Method 1: Study the Operational Performance Before and After the Development at the Site. 
In this method, the traffic volume and selected MOEs in the TIA reports for the “no build” condition 
are compared with the same MOEs computed using traffic volume and geometric conditions data 
collected during 2009 for the “build” condition. These MOEs are computed using Synchro® 
traffic simulation software. This method helps in studying the effect of the new development with 
recommended treatments at intersections near and adjacent to the development.

Method 2: Study the Effectiveness of Methods to Forecast the Operational Effects Due to 
the Development. This method helps in studying the effect of methods used to forecast traffic 
needs due to a new development. MOEs for the “build” condition forecasted in the TIA reports 
are compared with the same MOEs for the “build” condition computed using traffic volume and 
geometric conditions data collected during 2009. These MOEs are computed using Synchro® traffic 
simulation software.

Method 3: Study the Effectiveness of the Research /Traffic Simulation Software. The selected 
MOEs, such as the number of stops and delay collected in the field during 2009 for the “build” 
condition, are compared to the same MOEs computed using Synchro® traffic simulation software 
(considering traffic volume and geometric conditions data collected during 2009) for the “build” 
condition. This method identifies the effectiveness of the adopted TIA procedure in replicating the 
real-world data and operational performance. It also provides insights to obtain better estimates of 
traffic conditions in the future.
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Analyze Effectiveness of Treatments

Analysis was carried out to compare intersection delay under “no build” conditions during 2009 
and “build” conditions during 2009. This helps to examine if there was an increase or decrease in 
intersection delay after the development with the deployed treatments (“build” condition during 
2009) when compared with the projected study year “no build” condition.

ANALYSIS & RESULTS

Six TIA case studies in the state of North Carolina were selected for data collection, analysis 
and evaluation. Table 1 shows information pertaining to location, type, build-out year, percent of 
development completed as of spring 2010, and level of urbanization of all six TIA sites selected 
for this research. The first four sites are in the Charlotte region, while the last two sites are in the 
Raleigh area.

For illustration purpose, WT Harris Boulevard Primax Site is discussed in detail in this paper. 
MOEs are summarized at intersection level (not by approach and turning movement). Readers are 
referred to the study conducted for the North Carolina Department of Transportation (NCDOT) for 
analysis of sites pertaining to all case studies (Pulugurtha and Mora 2010).

Table 1: Selected TIA Case Study Sites and Their Characteristics

Site
Type of 

Development
TIA Study/Start 

Build Year

Anticipated 
Full Build Out 

Year

% Completed at 
the time of this 

Research
Level of 

Urbanization
WT Harris 
Boulevard 
Primax 

Commercial 2004 2009 75 Urban

Mountain 
Island Square 

Mixed Land 
Use

2004 2009 60 Sub-urban

Cato Property Residential 2004 2010 95 Sub-urban
University 
Pointe

Commercial 2005 2010 70 Urban

Midway 
Plantation

Commercial 2005 2007 95 Urban

Retail 
Development at 
Youngsville

Commercial 2005 2008 75 Sub-urban

Primax Properties, LLC, proposed a commercial development located on an approximately 
549,000 square feet vacant area in the southeast quadrant of E. WT Harris Boulevard (NC 24) / 
Rocky River Road (SR 2828) intersection in Charlotte. The property was planned to be completed in 
2009 (“build out” year). Following are the intersections that are under the area of influence of the site 
(as indicated in the WT Harris Boulevard Primax site TIA report). The type of intersection control, 
whether existing or proposed and near or adjacent to the development, are shown in parentheses.
1.	 E. WT Harris Boulevard (NC 24) / Rocky River Road (SR 2828) (existing; signalized; near)
2.	 E. WT Harris Boulevard (NC 24) / Grier Road (SR 2976) (existing; signalized; adjacent)
3.	 Rocky River Road (SR 2828) / Grier Road (SR 2976) (existing; signalized; adjacent)
4.	 Rocky River Road (SR 2828) / Proposed Access A (unsignalized; proposed; near)
5.	 E. WT Harris Boulevard (NC 24) / Proposed Access B (unsignalized; proposed directional 

crossover; near)
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The operational performance at intersections 1, 2, and 3 was evaluated using the three different 
methods. Traffic data were collected from TIA reports and in the field (using manual and video 
data collection methods) to compute MOEs such as the number of stops, delay, and LOS at these 
intersections using Synchro® 6.0 traffic simulation software. Table 2 summarizes traffic data by 
approach and turning movement from TIA reports (both before development and forecasted) and 
observed in the field (year 2009).

Table 2: 	 Traffic Volume Before, Forecasted, and Observed After Development 
(WT Harris Boulevard Primax Site, Charlotte, North Carolina)

Approach Turning 
Movement

Morning Peak Hour Evening Peak Hour
Before 
(2004)

Forecasted  
(2009)

Observed 
(2009)

Before 
(2004)

Forecasted  
(2009)

Observed 
(2009)

E. WT Harris Blvd / Rocky River Rd*

Eastbound
L 14 51 53 25 101 77
T 53 94 82 238 348 72
R 71 82 11 57 66 22

Westbound
L 102 153 115 23 122 77
T 143 192 31 44 76 31
R 619 938 718 105 265 318

Northbound
L 27 91 36 36 102 43
T 1,710 2,014 1,607 1,253 1,524 1,378
R 22 28 10 30 44 84

Southbound
L 59 209 102 435 771 726
T 1,064 1,338 1,047 1,631 1,974 1,623
R 9 24 41 22 37 52

E. WT Harris Blvd / Grier Rd

Eastbound
L 34 70 42 43 71 82
T 65 151 113 339 513 317
R 196 227 148 289 335 306

Westbound
L 379 638 344 105 248 286
T 382 554 327 95 173 132
R 15 17 69 28 32 52

Northbound
L 236 277 213 208 245 205
T 1,769 2,120 1,651 1,262 1,525 1,411
R 130 247 220 441 688 486

Southbound
L 25 91 75 25 87 119
T 1,130 1,339 1,010 1,130 1,807 1,574
R 39 64 39 39 79 56

Rocky River Rd / Grier Rd

Eastbound
L 95 276 133 653 1,132 771
R 1 1 19 15 17 50

Northbound
L 6 7 13 9 10 7
T 175 369 194 731 1,140 674

Southbound
T 753 1,193 703 175 378 352
R 821 1,306 850 152 415 364

L, T and R above indicate left-turn, through and right-turn movements, respectively. 
* indicates intersection is closest to the development/site
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Traffic volume (shown in Table 2) increased considerably (more than the general 3% annual 
growth of traffic on the roads) at all the three study intersections after the development at the TIA 
site. Moreover, the forecasted traffic volumes involve very large errors relative to the observed 
traffic volumes.

Method 1: Study the Operational Performance Before and After the Development

Table 3 shows the total number of stops, intersection delay, and intersection LOS for “no build” 
condition from TIA reports and computed using traffic volume and geometric conditions data 
collected during 2009 for the “build” condition.

The number of stops and intersection delay increased from 2004 (“no build” condition) to 2009 
(“build” condition) at all the three intersections near the site during the evening peak hours, but only 
at one intersection near the site during the morning peak hours. The cause can be attributed to site 
traffic/off-site development growth, changes in signal timing patterns, and, use of PHFs and heavy 
vehicle percentages from field observations for the “build” condition. The increase in intersection 
delay could also be due to construction of two new access points near the new development.

Table 3: 	 Delay and LOS Before and After Development (WT Harris Boulevard Primax 
Site, Charlotte, North Carolina)

Intersection
Morning Peak Hour Evening Peak Hour

# Stops
Delay 

(sec/veh)
LOS

# 
Stops

Delay 
(sec/veh)

LOS

TIA Reports - 2004 (No Build Condition)
WT Harris Blvd / Rocky River Rd* 1,635 26.6 C 2,593 37.7 D
WT Harris Blvd / Grier Rd 3,696 50.2 D 2,333 32.2 C
Rocky River Rd / Grier Rd 635 12.6 B 1,259 35.6 D
 Computed from Field Counts - 2009 (Build Condition)
WT Harris Blvd / Rocky River Rd* 1,892 34.2 C 3,061 38.9 D
WT Harris Blvd / Grier Rd 3,027 49.9 D 3,888 72.0 E
Rocky River Rd / Grier Rd 554 7.0 A 1,516 40.4 D

* indicates intersection is closest to the development/site

Method 2: Study the Effectiveness of Methods to Forecast the Operational Effects of the 
Development

The MOEs for the “build” condition forecasted in the TIA reports were compared with the MOEs 
for the “build” condition using traffic volume and geometric conditions data collected during 2009 
and computed using Synchro® traffic simulation software (Table 4). The total number of stops, 
intersection delay, and intersection LOS are shown in the table. The results were used to evaluate 
“what was expected to happen and what is happening now?”

The computed delays for the “build” condition from TIA reports during the morning peak hour 
are slightly lower than the computed delays from field counts for two of the three study intersections. 
The forecasted delay at the intersection next to the development, E. WT Harris Boulevard/Rocky 
River Road intersection, during the evening peak hour was higher than the current delay, while the 
delay at E. WT Harris Boulevard/Grier Road was lower than observed delay. The delay at the Rocky 
River Road/Grier Road intersection was higher during the morning peak hour and lower during the 
evening peak hour than the observed delay.
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Table 4:	 Delays and LOS - Forecasted vs. Computed (WT Harris Boulevard Primax Site, 
Charlotte, North Carolina)

Intersection
Morning Peak Hour Evening Peak Hour

# 
Stops

Delay 
(sec/veh) LOS # 

Stops
Delay 

(sec/veh) LOS

Forecasted from TIA Reports - 2009 (Build Condition)
WT Harris Blvd / Rocky River Rd* 3,310 32.3 C 4,571 63.7 E
WT Harris Blvd / Grier Rd 4,683 42.8 D 4,567 50.0 D
Rocky River Rd / Grier Rd 1,296 24.8 C 2,053 26.0 C
Computed from Field Counts - 2009 (Build Condition)
WT Harris Blvd / Rocky River Rd* 1,890 34.2 C 3,071 38.9 D
WT Harris Blvd / Grier Rd 3,027 49.9 D 3,888 72.0 E
Rocky River Rd / Grier Rd 554 7.0 A 1,516 40.4 D

* indicates intersection is closest to the development/site

The total number of stops from TIA reports (forecasted) are higher than those computed from 
field counts, at all three study intersections, during both morning and evening peak hours.

The difference in forecasted and computed number of stops, delay, and LOS for the “build” 
condition could be due to 1) the use of PHFs and heavy vehicle percentages from field observations, 
and, 2) existing signal timing patterns that are different than those used in the TIA. In addition, the 
planned completion year of the proposed development is 2009. However, field visits indicate that 
only 75% of the proposed development was complete by the spring of 2010. Overall, differences in 
what was expected to happen are observed based on analysis.

Method 3: Study the Effectiveness of Research/Traffic Simulation Software

The number of stops and delay observed directly from the field were compared to those computed 
from the Synchro® analysis to examine the effectiveness of the research or traffic simulation 
software in forecasting traffic condition. As stated previously, these data were only collected for 
left-turning and through traffic. Since the research has incorporated factors that are omitted in the 
TIA study, results from this method suggest consideration of additional factors to better forecast 
future needs. The observed average delay and computed average delay are shown in Table 5.
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Table 5: 	 Delays and LOS - Observed vs. Computed (WT Harris Boulevard Primax Site,
	 North Carolina)

Intersection
Morning Peak Hour Evening Peak Hour

# Stops Delay 
(sec/veh) LOS # 

Stops
Delay 

(sec/veh) LOS

Observed in the Field - 2009 (Build Condition)
WT Harris Blvd / Rocky River Rd* 806 35.0 C 1,344 39.0 D
WT Harris Blvd / Grier Rd 1,588 45.0 D 2,574 44.0 D
Rocky River Rd / Grier Rd 301 7.0 A 1,971 33.0 C
Computed from Field Counts - 2009 (Build Condition)
WT Harris Blvd / Rocky River Rd* 1,561 34.2 C 2,882 38.9 D
WT Harris Blvd / Grier Rd 2,872 49.9 D 3,426 72.0 E
Rocky River Rd / Grier Rd 301 7.0 A 1,486 40.4 D

* indicates intersection is closest to the development/site.

The observed total number of stops is lower than the computed number of stops for two of 
the three study intersections. The observed delay at E. WT Harris Boulevard/Rocky River Road 
intersection are close to the computed delay during the morning and evening peak hours. At E. WT 
Harris Boulevard/Grier Road intersection and Rocky River/Grier Road intersection, the observed 
delays are close to the computed delays during the morning peak hour, while the observed delays are 
lower than the computed delays for two intersections during the evening peak hour. The estimates 
had an effect on LOS at these two intersections during evening peak hours.

The difference in observed and computed number of stops for two of the study intersections 
could be attributed to exclusion of right-turning traffic in the field for capturing these MOEs. The 
relatively high difference between observed and computed delay during evening peak hours for WT 
Harris Boulevard/Grier Road intersection could be due to unusually high right-turning traffic for 
one of the approaches or inability of the traffic simulation software to forecast accurately for the 
observed traffic volume conditions. The difference in delays was observed to be marginal for the 
other two intersections or durations.

Summary of Results for All TIA Case Study Sites

As shown in Table 1, the “build-out” year varied from 2007 to 2010 for the selected TIA sites. 
However, the percent of development completed varied from 60% to 95% as of spring 2010.

Table 6 compares the PHF, heavy vehicle percentage, and traffic growth rate for all the sites. 
These are additional factors considered in this research. Both default values assumed and used by 
consultants who prepared TIA reports and actual observations from the field are shown in the case 
of PHFs and heavy vehicle percentages. The computed PHFs based on observed traffic data at the 
selected intersections of TIA sites varied from 0.87 to 0.97, while consultants used a default value 
of 0.90. Likewise, heavy vehicle percentages varied from 0% to 5% at the selected intersections of 
TIA sites, while consultants used a default value of  2%.

In general, traffic volumes forecasted at the selected TIA sites in the TIA reports are observed 
to be higher than those observed in the field (Table 2). The percent difference is high though the 
forecasted and observed right-turn traffic volumes differed by a low value. The numbers of stops 
from the TIA also followed a similar pattern as traffic volume. The difference in results obtained 
could be attributed to assumed default growth rate (3%), which did not reflect the real-world scenario. 
In reality, the growth rates varied from -9% to +25% at the selected intersections of TIA sites.
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Table 6: Observed PHF, Heavy Vehicle Percentage, and Growth Rate

Site Intersection Time 
period PHF

Heavy 
Vehicle 

(%)

Traffic 
Growth Rate

WT Harris 
Boulevard 
Primax

E. WT Harris Blvd / Rocky River Rd
AM 0.89 2.0 0.0
PM 0.92 1.2 3.0

E. WT Harris Blvd / Grier Rd
AM 0.95 3.8 -1.0
PM 0.96 2.0 5.0

Rocky River Rd / Grier Rd
AM 0.95 2.0 1.0
PM 0.92 2.0 5.0

Mountain 
Island Square

Brookshire Blvd / Mt. Holly Huntersville 
Rd

AM 0.93 1.0 0.0
PM 0.93 0.6 14.0

Mt. Holly Huntersville Rd / Callabridge Ct
AM 0.96 2.0 -6.0
PM 0.94 0.0 5.0

Cato Property

Tom Short Rd / Ballantyne Commons 
Pkwy

AM 0.86 3.0 10.0
PM 0.94 0.0 5.0

Tom Short Rd / Ardrey Kell Rd
AM 0.97 4.0 17.0
PM 0.95 1.0 15.0

Ardrey Kell Rd / Providence Rd
AM 0.96 2.0 11.0
PM 0.92 1.0 2.0

Providence Rd / Allison Woods Dr
AM 0.93 1.0 3.0
PM 0.91 0.5 3.0

University 
Pointe

North Tryon St (US 29) / McCullough Dr
PM 0.96 1.0 2.0

North Tryon St (US 29) / The Commons at 
Chancellor Park Dr

PM 0.96 0.6 N/A

Midway 
Plantation

Knightdale Blvd (US 64) / Southbound Off 
Ramp

AM 0.95 5.0 -9.0
PM 0.94 2.0 -3.0

Knightdale Blvd (US 64) / Northbound On 
Ramp

AM 0.89 5.0 -3.0
PM 0.89 1.0 12.0

Knightdale Blvd (US 64) / Site Drive #1 
(Hinton Oaks Blvd)

AM 0.90 4.0 1.0
PM 0.94 1.0 12.0

Knightdale Blvd (US 64) / Site Drive  #3 
(Wide Waters Pkwy)

AM 0.94 4.0 0.0
PM 0.87 2.0 25.0

Retail 
Development 
at Youngsville

US 1 / NC 96
AM 0.92 2.0 -2.0
PM 0.92 2.0 0.0

US 1 / Mosswood Blvd
AM 0.94 2.0 -3.0
PM 0.91 2.0 -2.0

Note: 0.9, 2% and 3% were assumed as PHF, heavy vehicle % and growth rate in selected TIA studies.
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Effectiveness of Treatments

Analysis was conducted to compare delay at intersections near each site before and after the 
development with the deployed treatments, and to study if there was an increase or decrease in the 
intersection delay due to deployed treatments. The treatments installed at the six TIA sites included 
additional right-turn or left-turn lane, additional approach/leg (convert three-legged intersection 
to four-legged intersection), installation of traffic signal, access points, and un-installation of 
directional (provision of left turns in one direction only) crossovers. Table 7 summarizes treatments 
implemented after development, at the time of this research, at each TIA case study site.

Table 7: Summary of Treatments by TIA Case Site

Treatment
WT 

Harris 
Primax

Mt. 
Island 
Square

Cato 
Property

University 
Pointe

Midway 
Plantation

Retail 
Development 
at Youngsville

Additional right turn lane X X  
Additional left turn lane X X X X X
Traffic signal Installation X X
Reducing cycle length X
Increasing cycle length  X   
Additional approach/leg X X X  X
Access points X X X
Uninstallation of directional 
crossover* X

* Provision for left-turns in one direction only.

The “no build” condition data were projected to the year 2009 so as to reflect the growth in 
traffic and for easy comparison. The projections were based on a pre-approved 3% traffic growth 
rate recommended for use in TIA by NCDOT. The delay based on the projected data was then 
compared to operational performance based on 2009 field data (Table 8). An increase in delay, in 
particular, during evening peak hours was observed at most of the study intersections. These trends 
seem to be similar and consistent irrespective of the type of treatment and development. Also, an 
increase in delay and decrease in operational performance was observed at adjacent intersections in 
addition to the intersection near the site. As expected, a decrease in the effect was observed with an 
increase in distance of an intersection from the development.
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Table 8: 	Change in Intersection Delay for 2009 “No Build” and “Build” Conditions at 		
	 Intersection Near and Adjacent to TIA Case Site

Site Intersection
Delay

AM PM

WT Harris 
Boulevard 
Primax

E. WT Harris Blvd / Rocky River Rd* I I
E. WT Harris Blvd / Grier Rd D I
Rocky River Rd / Grier Rd D I

Mountain 
Island Square

Brookshire Blvd / Mt. Holly Huntersville Rd I I
Mt. Holly Huntersville Rd / Callabridge Ct* I I

Cato Property

Tom Short Rd / Ballantyne Commons Pkwy* I I
Tom Short Rd / Ardrey Kell Rd I I
Ardrey Kell Rd / Providence Rd I I
Providence Rd / Allison Woods Dr

University 
Pointe

North Tryon St (US 29) / McCullough Dr D
North Tryon St (US 29) / The Commons at Chancellor 
Park Dr* I

Midway 
Plantation

Knightdale Blvd (US 64) / Southbound Off Ramp D D
Knightdale Blvd (US 64) / Northbound On Ramp I I
Knightdale Blvd (US 64) / Site Drive #1 (Hinton Oaks 
Blvd) I I

Knightdale Blvd (US 64) / Site Drive  #3 (Wide Waters 
Pkwy)* I I

Retail 
Development at 
Youngsville

US 1 / NC 96* I I

US 1 / Mosswood Blvd D I

Note: “I” indicates an increase and “D” indicates decrease in intersection delay.
* indicates intersection is closest to the development/site.

CONCLUSIONS

Traffic volume and MOEs such as the number of stops and delay at intersections near the 
development generally increased after the development was built. This can be attributed to general 
growth of traffic and traffic generated by the new development. It was also observed that other 
off-site developments aggravated traffic problems at some intersections. Traffic generated by these 
off-site developments was either under-estimated or not considered in the TIA. The MOEs were 
generally over-estimated when conducting TIA. The computed ratios tend to be very high for lower 
values (say, low right-turn traffic volume along an approach) than when compared to those with 
higher values.

Field observations at the study intersections yielded very different PHFs and heavy vehicle 
percentages than default values. While using default PHF and heavy vehicle percentage values 
(0.9% and 2%, respectively) would yield conservative forecasts if PHF is greater than 0.9 and heavy 
vehicle percentage is less than 2%, it may not be appropriate or suitable when PHF is lower than 0.9 
or heavy vehicle percentage is greater than 2%. Therefore, where appropriate, lower PHFs or higher 
heavy vehicle percentages than default values are recommended for use.

The cycle lengths and signal phasing/timing parameters used in TIA are different from what 
was observed in the field under current conditions. This had an effect on “what was forecasted to 
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happen?” and “what is happening right now?” It is therefore recommended that suggested TIA 
guidelines be considered while designing signal timing and phasing for TIA (in addition to analysis 
based on existing signal phasing and timing data). This would also assist in easy comparison and 
effective evaluation of treatments after the deployment.

A pre-approved default growth rate of 3% was used in projecting future traffic in most of the 
TIA reviewed as a part of this research. The growth rate may vary based on changes to land use 
characteristics, off-site developments, and the type of facility. Therefore, considering traffic growth 
rate within the vicinity of the site will yield better estimates.

In most of the TIA reports, traffic conditions were forecasted using three years as the time 
frame for completion of construction. Several proposed developments and improvements were not 
complete (vacant parcels and incomplete implementation of transportation projects possibly due 
to the state of the economy) at the time of this research (though the complete build out year was 
2009 for most case sites were considered). The percent of development completed at the selected 
study sites varied from 60% to 95%. It would help if consultants carry out analysis with multiple 
build-out years (say, three and five years based on the magnitude of the development) and present 
analysis for the same. For instance, a development was scheduled for full build out in three years. If 
the construction was delayed due to unforeseen conditions (such as a fall in the economy), it would 
allow the decision makers to plan and implement treatments based on the status of construction 
(“build” condition).

As stated before, incomplete development was observed during 2009 at several case sites. 
However, the observed MOEs are higher in value than the forecasted MOEs even with partial 
development at most of the sites considered in this research. Collecting and analyzing data under 
“ground-zero” conditions prior to start of construction of the development in addition to collection 
and analysis of data at regular intervals (say, every year) throughout the construction of the 
development would help better understand the operational effects of new developments. On the 
other hand, since uncertainty may prevail during the project construction, it would better help the 
decision makers if a range of MOE forecasts is available from the TIA study depicting the best/worst 
case scenarios. This would also help identify, plan, and deploy treatments at suitable times over the 
project duration in the future.

TIA studies do not generally include safety evaluation of the site. Including safety evaluation 
would help better understand the effect of the development and treatments on crashes at intersections 
near the site. Further, data collected for one day are normally used in TIA. Collecting and using data 
for multiple days would eliminate the variability that can lead to any biased results. Using average 
day data observed from multiple days or average results from analysis done for multiple days would 
yield more realistic outputs.

Overall, it can be concluded that ignoring the PHFs, heavy vehicle percentages, local growth 
rates, and off-site developments would not yield the best results. Some results obtained (example, 
decrease in traffic volume) in this research may seem counter-intuitive in nature. However, lessons 
learned from this research serve as valuable inputs to DOTs in making decisions or adopting policies 
that would lead to use of better methods for forecasting the impacts of new developments.

Acknowledgements

The authors acknowledge the North Carolina Department of Transportation (NCDOT) for providing 
financial support for this project.  Special thanks are extended to Tony Wyatt, Kevin Lacy, Michael 
Reese, Jay Bennett, Louis Mitchell, Scott Cole, and Neal Galehouse of NCDOT for providing 
support, guidance and valuable inputs for successful completion of the research. The authors also 
thank Doman Cecilia and Charles Abel of the city of Charlotte Department of Transportation 
for providing signal timing data for sites in the Charlotte region and TIA consultants (Kubilins 
Transportation Group, Inc.) for providing required data. In addition, data collection efforts by 



57

JTRF Volume 54 No. 3, Fall 2015

the graduate students in transportation engineering of the Department of Civil & Environmental 
Engineering at the University of North Carolina at Charlotte are also recognized.

Disclaimer

The contents of this paper reflect the views of the authors and not necessarily the views of the 
University. The authors are responsible for the facts and the accuracy of the data presented herein.  
The contents do not necessarily reflect the official views or policies of either the North Carolina 
Department of Transportation or the Federal Highway Administration at the time of publication.  
This report does not constitute a standard, specification, or regulation.

References

American Association of State Highway and Transportation Officials (AASHTO). A Policy on 
Geometric Design of Highways and Streets. Washington, D.C., 2001.

Bared, J.G. and E.I. Kaisar. “Median U-Turn Design as an Alternative Treatment for Left Turns at 
Signalized Intersections.” ITE Journal 72(2), (2002): 50-54.

Cambridge Systematics, Inc. Traffic Congestion and Reliability: Linking Solutions to Problems. 
Prepared for the Federal Highway Administration, 2004. http://www.ops.fhwa.dot.gov/congestion_
report_04/index.htm#toc. Accessed October 31, 2015.

Center for Neighborhood Technology (CNT). Economic Effects of Public Investment in 
Transportation and Directions for the Future. Prepared for the State Smart Transportation Initiative 
(SSTI), 2012. http://www.ssti.us/transportation-scorecard/ScorecardReport.pdf. Accessed October 
31, 2015.

Dissanayake, S. and J. Lu. “Access Management Techniques to Improve Traffic Operations and 
Safety: A Case Study of a Full vs. Directional Median Opening.” Mid-Continent Transportation 
Research Symposium Proceedings, Ames, Iowa, 2003. http://www.intrans.iastate.edu/publications/_
documents/midcon-presentations/2003/dissanayakeaccess.pdf. Accessed March 31, 2010.

Duany, A., E. Plater-Zyberk, and J. Speck. Why Building Roads Doesn’t Ease Congestion? An 
Excerpt from Suburban Nation: The Rise of Sprawl and the Decline of the American Dream. North 
Point Press, 2000. http://stopthepave.org/why-building-roads-doesnt-ease-congestion. Accessed 
April 28, 2010.

Edwards, M. Community Guide to Development Impact Analysis. http://www.lic.wisc.edu/
shapingdane/facilitation/all_resources/impacts/analysis_traffic.htm. Accessed March 31, 2010.

Eisele, W.L. and W.E. Frawley. “Estimating the Impacts of Access Management with Micro-
Simulation: Lessons Learned.” Sixth National Conference on Access Management, Kansas 
City, Missouri, 2003. http://www.accessmanagement.info/AM2004/AM0407_Eisele_paper.pdf. 
Accessed March 31, 2010. 

Eisele, W.L., W.E. Frawley, and C.M. Toycen. Estimating the Impacts of Access Management 
Techniques: Final Results (Report # FHWA/TX-04/0-4221-2), 2004. http://www.accessmanagement.
info/pdf/TTI_ImpactsofAM2004-4221-2.pdf. Accessed March 31, 2010.



Traffic Impact Analysis

58

Federal Highway Administration (FHWA). CORSIM User Manual Version 1.01. Office of Safety 
and Traffic Operations R&D, FHWA, McLean, VA, 1996. http://ntl.bts.gov/lib/jpodocs/repts_
te/6408.pdf. Accessed November 8, 2015.

Federal Highway Administration (FHWA). Manual on Uniform Traffic Control Devices for Streets 
and Highways. Highway Traffic Signals, Part #4. Washington, D.C., 2003.

Institute of Transportation Engineers (ITE). Trip Generation Manual, Ninth Edition. Washington, 
D.C., 2012.

Levinson, H.S., T. Lomax, and S. Turner. “Signal Spacing - A Key to Access Management.” 
Compendium of Papers from the Second National Conference on Access Management, Vail, 
Colorado, 1996. http://www.accessmanagement.info/pdf/AM96.pdf. Accessed May 11, 2010.

Muldoon, D. and L.D. Bloomberg. “Development of Best Practices for Traffic Impact Studies.” 
Transportation Research Record 2077, (2008): 32-38.

Parsonson, P.S., M.G. Waters III, and J.S. Fincher. “Georgia Study Confirms the Continuing Safety 
Advantage of Raised Medians Over Two-Way Left-Turn Lanes.” Fourth National Conference on 
Access Management, Portland, Oregon, 2000. http://www.accessmanagement.info/pdf/AM00PAPR.
pdf. Accessed April 28, 2010.

Pulugurtha, S.S. and R. Mora. Traffic Operational Evaluation of Traffic Impact Analysis (TIA) Case 
Sites. Final Report # 2009-09, Prepared for the North Carolina Department of Transportation, 2010. 
http://www.ncdot.org/doh/preconstruct/tpb/research/download/2009-09finalreport.pdf. Accessed 
July 8, 2015.

PTV. VISSIM 6:0 User Manual. PTV Planung Transport Verkehr AG, Germany, 2014.

Roess, R.P., E.S. Prassas, and W.R. McShane. Traffic Engineering. Third Edition, Pearson Prentice 
Hall, Upper Saddle River, New Jersey, 2004.

Stover, V.G. and F.J. Koepke. “An Introduction to Access Management.” Fourth National 
Conference on Access Management, Portland, Oregon, 2000. http://www.accessmanagement.info/
pdf/AM00PAPR.pdf. Accessed April 28, 2010.

Trafficware. Synchro Studio 8: User Guide. Trafficware, Inc., Albany CA, 2013.

Transportation Research Board (TRB). Access Management Manual. Washington, D.C., 2003.

Transportation Research Board (TRB). Highway Capacity Manual 2010. Washington, D.C., 2010.

Vargas, F. and G.V. Reddy. “Does Access Management Improve Traffic Flow? Can NETSIM 
be Used to Evaluate?” Compendium of Papers from the Second National Conference on Access 
Management, Vail, Colorado, 1996. http://www.accessmanagement.info/pdf/AM96.pdf. Accessed 
May 11, 2010.

United States of Department of Transportation. “Beyond Traffic 2045: Trends and Choices.” 2015, 
https://www.transportation.gov/sites/dot.gov/files/docs/Draft_Beyond_Traffic_Framework.pdf. 
Accessed October 31, 2015.

Wallace, C.E., K.G. Courage, D.P. Reaves, G.W. Schoene, and G.W. Euler. TRANSYT-7F User’s 
Manual. University of Florida, Gainesville and Federal Highway Administration, 1984.



59

JTRF Volume 54 No. 3, Fall 2015

Srinivas S. Pulugurtha is a professor of civil & environmental engineering department and director 
of the Infrastructure,  Design, Environment and Sustainability (IDEAS) Center at the University 
of North Carolina at Charlotte. He received  his Ph.D. in civil engineering from the University 
of Nevada, Las Vegas, in 1998. His areas of expertise include transportation planning/modeling, 
alternate modes of transportation, Geographical Information Systems (GIS) and Internet mapping 
applications, traffic operations and safety, risk assessment, quantitative analysis, and the application 
of emerging technologies. He is a member of several professional organizations and served on 
various national committees.

Rakesh Mora  is currently employed as an associate traffic engineer at RK&K, Fairfax, VA. He 
received his M.S. in civil engineering from the University of North Carolina at Charlotte in 2010. His 
areas of interest include transportation planning, traffic safety, traffic operations, and application of 
traffic simulation software to solve transportation engineering problems.



60



61

JTRF Volume 54 No. 3, Fall 2015

Intrarailroad and Intermodal Competition 
Impacts on Railroad Wheat Rates
by Michael W. Babcock and Bebonchu Atems

The issue addressed in this paper is more fully understanding the relationship of intrarailroad 
competition and rail rates for wheat in the largest wheat producing states, which are Idaho, Kansas, 
Minnesota, Montana, North Dakota, Oklahoma, South Dakota, Texas, and Washington. The overall 
objective of the study is to investigate railroad pricing behavior for wheat shipments. The rate model 
was estimated with OLS in double-log specification utilizing the 2012 STB Confidential Waybill 
sample and other data.

The research found that the distance from origin to destination and the total shipment weight 
had the expected negative relationships with railroad wheat rates and were statistically significant.  
The distance from origin to the nearest barge loading location had the expected positive relationship 
to railroad wheat rates and was also significant. The weight of each covered hopper car and the 
Herfindahl-Hirschman Index were both non-significant. However, the study used other data to 
determine that intrarailroad competition for wheat shipments within states appears to be present in 
most states.

INTRODUCTION

Railroads were the most heavily regulated transportation mode prior to passage of the Staggers 
Rail Act in 1980.  Deregulation gave the railroads price flexibility that was previously unavailable.  
Prices between variable cost and 180% of variable cost were not subject to regulatory review.  The 
Staggers Act set time limits for ICC decisions regarding abandonments and mergers. Thus, Class 
I railroads were able to quickly abandon or sell unprofitable branch lines.  Mergers reduced the 
number of Class I railroads from 40 in 1980 to seven today.

Generally, deregulation has benefited both the railroads and the shippers. For the railroad 
industry, the average rate of return on investment increased from less than 3% in the 1970s to 4.4% 
for the 1980s, 7.64% in the 1990s, and 8.21% in the 2000s (Association of American Railroads 
[AAR], various years). For the 2010 to 2013 period, the rate of return on investment averaged 
12.09% (AAR 2014). The average railroad rate of return on shareholders’ equity rose from 2.44% in 
the 1970s to 7.37% in the 1980s, 9.51% in the 1990s, and 9.38% in the 2000s (AAR, various years).  
For the 2010-2013 period, the rate of return on shareholders’ equity averaged 13.94% (AAR 2014).

Gallamore (1999) analyzed the relationship between deregulation and innovation in the rail 
industry.  Using a before-and-after analysis, he pointed out that railroads stagnated under the final 
decades of ICC regulation but have significantly recovered as indicated above by the improved 
financial performance after 1980.

According to Grimm and Winston (2000), the net annual benefits to shippers were more than 
$12 billion (in 1999 dollars) in the first decade following passage of the Staggers Act.  Shippers have 
benefited from 20 years of declining rail rates (inflation adjusted revenue per ton-mile) as well as the 
preservation of rural area branch lines sold or leased to short line railroads (Prater 2010).

Railroads are important for transporting agricultural commodities to domestic processing 
locations and export ports. These shipments involve large scale movements of low value, bulk 
commodities over long distances. Compared with other major grains (and soybeans), railroads are 
a particularly valuable mode for transporting wheat, moving 51% of all wheat shipments in 2013 
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(Sparger and Marathon 2015). According to Prater (2010), nine of the top 10 wheat producing 
states are more than 150 miles from barge transportation on the Mississippi River, which provides 
the most significant intermodal competition to railroads for long distance shipments of grain to 
export ports.  Wheat shippers in the Great Plains states do not have a cost effective transportation 
alternative to railroads since barge loading locations are not directly accessible, and trucks are not 
competitive for hauling shipments over long distances. Therefore, intramodal competition for wheat 
shipments is expected to be a significant factor in rail rates.  Table 1 contains Class I railroad route 
mileage for the nine major wheat producing states in 2013.

The data in Table 1 indicate the railroad mileage of some states is dominated by a single Class I 
railroad.  For example, 88.1% of the rail miles in Idaho are UP miles.  The BNSF has 94.1% of the 
Montana rail miles, 78.1% of the North Dakota miles, and 75.4% of the Washington miles.  These 
states all have regional and local railroads that act as bridge carriers for the Class I railroads and, as 
such, they provide little direct intrarailroad competition.  However, depending on the state railroad 
network, non-Class I railroads may contribute to intrarailroad competition.

Unlike Idaho, Montana, North Dakota, and other states are characterized by a Class I duopoly 
of roughly equal size firms. For example, in Kansas the BNSF has 44.3% of the Class I rail miles 
and the UP has 55%.  In Minnesota the BNSF has 36.4% and the CP (Canadian Pacific) has 38.9% 
of the state’s rail miles. In Oklahoma the BNSF and UP have 43.9% and 49.7% of the Class I rail 
miles, respectively.  The BNSF and UP have respective shares of 40.5% and 52% of Texas Class I 
miles.  This group of states would be expected to have lower rail wheat rates than the previous group 
due to greater intrarailroad competition. The degree of intrarailroad competition varies among states 
as should the level of railroad wheat prices. Potentially, intrarailroad competition could vary within 
states as well.

The overall objective of this research is to investigate 2012 railroad pricing behavior for the 
shipment of wheat. Specific objectives include: (1) measure the impact on railroad wheat rates 
of the intensity of intramodal competition, (2) develop a model to measure the impact of railroad 
costs, intramodal competition, and intermodal competition on rail wheat rates in the nine major 
wheat production states, (3) identify and measure the major cost determinates of railroad wheat 
rates, and (4) examine the hypothesis that railroad intramodal competition varies within a state with 
implications for intrastate variation in railroad wheat rates.

WHEAT PRODUCING STATE RAIL SYSTEMS

Tables 2-10 contain the railroad route mileage of nine states by class of railroad. Idaho has two 
Class I railroads, but the UP has 88.1% of the Class I miles. Idaho also has 10 Class III railroads, 
which collectively account for 714 miles for 41.7% of total Idaho rail miles.1  However, Idaho has 
no CRDs (Crop Reporting Districts) for wheat that are served by at least two Class I railroads.

Table 3 contains Kansas rail mileage, with BNSF and UP accounting for the great majority of 
Class I miles. Kansas has 11 Class II and III railroads, which as a group account for 40.5% of Kansas 
railroad mileage.

Table 4 indicates that Minnesota has more Class I rail mileage than non-Class I. CP and BNSF 
are the dominant Class I railroads, but UP and CN (Canadian National) have significant track 
mileage as well. Minnesota has 10 Class II and III railroads, which account for only 17% of the total 
Minnesota rail system.

As indicated by the data in Table 5, the BNSF is the dominant railroad in Montana, accounting 
for 63.2% of the Montana rail network. Montana has two Class II and three Class III railroads that 
as a group account for 36.8% of total Montana rail miles.
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Table 6 reveals that BNSF is the dominant Class I railroad in North Dakota, but CP has about 
500 miles as well. North Dakota has two Class II and two Class III railroads that collectively 
constitutes 35.4% of the North Dakota rail system.

Table 7 indicates that Oklahoma has two Class I railroads (BNSF and UP) of roughly equal size.  
Oklahoma has more (18) Class III railroads than any of the other eight states (except Washington, 
which also has 18) and account for 35.1% of the Oklahoma railroad network.

Table 8 reveals that South Dakota has two Class I railroads, with BNSF accounting for about 
60% of the Class I miles and UP the other 40% of the South Dakota rail system. South Dakota has 
seven Class III railroads, which account for 19.5% of the South Dakota railroad network.

Texas has significantly more rail miles than any of the other eight states (Table 9). UP has 
52% of the Class I rail miles, followed by BNSF (40.5%) and KCS (7.5%). Texas has two Class II 
railroads and eight Class III railroads that together accounty for 12.8% of the Texas railroad system.

Table 10 displays Washington rail miles, which indicate that the BNSF is the dominant Class I 
railroad in Washington with 75% of the rail miles; UP accounting for the remaining 25%.  Washington 
has 18 Class III railroads, accounting for 35.9% of the Washington railroad network.

Table 2:  Idaho Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 118
Union Pacific (UP) 877

Subtotal 995
Local Railroads (Class III)  
Montana Rail Link 33.5
Bountiful Grain and Craig Mountain 126.6
St Maries River 72.3
Boise Valley 42.1
Eastern Idaho 264.5
Great Northwest 4.3
Idaho Northern Pacific 101.3
Pend Oreille Valley 25.7
Washington and Idaho 19.1
U.G. Government 24.3

Subtotal 714
Grand Total 1709

Source: 2013 Idaho Statewide Rail Plan. Idaho Department of Transportation.
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Table 3: Kansas Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 1,237
Union Pacific (UP) 1,535
Kansas City Southern (KCS) 18

Subtotal 2,790
Regional Railroads (Class II)
Kansas and Oklahoma Railroad 753
Local Railroads (Class III)
South Kansas and Oklahoma Railroad 305
KYLE Railroad 417
Cimarron Valley Railroad 183
Nebraska, Kansas, and Colorado Railroad 122
Garden City Western Railroad 45
V&S Railway 25
Blackwell Northern Gateway Railroad 18
Blue Rapids Railroad 10
Boothill and Western Railroad 10
Missouri and Northern Arkansas Railroad 8

Subtotal 1,143
Grand Total 4,686

Source: 2011 Kansas Statewide Rail Plan.  Kansas Department of Transportation, pp. 40 and 52.
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Table 4: Minnesota Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 1,686
Union Pacific (UP) 665
Canadian National (CN) 479
Canadian Pacific (CP) 1804

Subtotal 4,634
Regional & Local Railroads (Class II & Class III)  
Minnesota Northern Railroad 257
Twin Cities and Western Railroad 234
Progressive Rail Inc. 97
Minnesota Prairie Line 94
Otter Tail Valley Railroad 72
St Croix Valley Railroad 66
Northern Plains Railroad 51
Minnesota Southern Railroad 42
Red River Valley and Western 32
Minnesota, Dakota and Western 6

Subtotal 951
Grand Total 5,585

Source: 2014 Minnesota Statewide Rail Plan, Minnesota Department of Transportation, 2014.

Table 5: Montana Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 1,939
Union Pacific (UP) 125

Subtotal 2,064
Regional Railroads (Class II)  
Montana Rail Link 475
Dakota, Missouri Valley and Western 540

Subtotal 1,015
Local Railroads (Class III)  
Central Montana Rail Line 84
Mission Mountain Railroad 42
Butte, Anaconda and Pacific Railroad 63

Subtotal 189
Grand Total 3,268

Source: Montana State Department of Transportation, 2014.
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Table 6: North Dakota Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 1,700
Canadian Pacific (CP) 484

Subtotal 2,184
Regional Railroads (Class II)  
Dakota, Missouri Valley and Western Railroad 424
Red River Valley and Western Railroad 427

Subtotal 851
Local Railroads (Class III)  
Northern Plains Railroad 297
Dakota Northern Railroad 48

Subtotal 345
Grand Total 3,380

Source: North Dakota Public Service Commission, 2013 Annual Report.
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Table 7: Oklahoma Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 1,037
Union Pacific (UP) 1,173
Kansas City Southern (KCS) 150

Subtotal 2,360
Local Railroads (Class III)  
South Kansas and Oklahoma Railroad 275
Grainbelt Corportation 176
Kiamichi Corportation 158
Arkansas-Oklahoma Railroad 118
Farmrail Corporation 161
Wichita, Tillman and Jackson Railroad 85
South Kansas and Oklahoma Railroad 67
Arkansas, Todd and Ladd Railroad 47
Texas, Oklahoma, and Eastern 41
Blackwell Northern Gateway Railroad 18
Cimarron Valley Railroad 35
Tulsa-Supulpa Union Railroad 23
Sand Springs Railroad 20
Tulsa Port of Catoosa 16
Western Farmers Electric Coop Railway 14
Public Service of Oklahoma Railroad 10
Northwestern Oklahoma Railroad 5
Port of Muscoge Railroad 5

Subtotal 1,274
Grand Total 3,634

Source: Oklahoma Statewide Freight and Passenger Rail Plan, Oklahoma Department 
of Transportation, 2014.
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Table 8: South Dakota Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 889
Canadian Pacific (CP) 598

Subtotal 1,487
Local Railroads (Class III)  
D&I Railroad 54.2
Dakota, Missouri Valley, Western Railroad 56.4
Dakota Southern Railroad 168.5
Sisseton Milbank Railroad 37.1
Sunflour Railroad 19.4
Ellis and Eastern Railroad 14.3
Twin Cities and Western Railroad 10.7

Subtotal 361
Grand Total 1,848

Source: 2014 South Dakota Statewide Railroad Plan, South Dakota Department of  
Transportation.

Table 9: Texas Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 4,929
Union Pacific (UP) 6,336
Kansas City Southern (KCS) 908

Subtotal 12,173
Regional Railroads (Class II)  
Texas Northeastern Railroad 665
Texas Pacifico Transportation 391

Subtotal 1,056
Local Railroads (Class III)  
Fort Worth and Western Railroad 276
West Texas and Lubbock Railroad 107
Texas Northeastern Railroad 104
Blacklands Railroad 66
Farmrail Corp. Railroad 59
Brownsville and Rio Grande Railroad 42
Kiamichi Railroad 40
Georgetown Railroad 30

Subtotal 724
Grand Total 13,953

Source: Texas Department of Transportation.
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Table 10: Washington Railroad Mileage by Class of Railroad, 2013
Class I Miles
Burlington Northern Santa Fe (BNSF) 1,633
Union Pacific (UP) 532

Subtotal 2,165
Local Railroads (Class III)  
Palouse River and Coulee City Railroad 169
Cascade and Columbia River Railroad 148
Kettle Falls International Railroad 142
Eastern Washington Gateway Railroad 108
Puget Sound and Pacific Railroad 108
Washington and Idaho Railroad 87
Columbia Basin Railroad 86
Central Washington Railroad 80
Great Northwest Railroad 69
Port of Pend Oreille Railroad 61
Portland, Vancouver, Junction Railroad 33
Patriot Woods Railroad 29
Royal Slope Line 26
Yakima Central Railroad 21
Western Washington Railroad 18
Port of Seattle Railroad 11
Port of Chehalis Railroad 10
Columbia and Cowlitz Railroad 9

Subtotal 1,215
Grand Total 3,380

Source: Washington Department of Transportation.
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STATE WHEAT PRODUCTION

Table 11 contains average annual wheat production for each of the nine states during the 2009-2013 
period. Kansas, North Dakota, Montana, and Washington had the largest production with 341.5, 
310.2, 193, and 146.2 million bushels, respectively. Collectively, the nine states averaged 1,463.3 
million bushels of wheat per year.

Table 11: Total Average Wheat Production, 2009-2013
	    (Thousands of Bushels)

State Average 
Production

Production 
Rank

Idaho       103,654 7
Kansas       341,500 1
Minnesota         75,438 9
Montana       192,953 3
North Dakota       310,186 2
Oklahoma       105,459 6
South Dakota       107,270 5
Texas         80,460 8
Washington       146,200 4
Total     1,463,310 

Source: US Department of Agriculture, National Agricultural Statistics Service

Wheat production data indicate likely origin areas for rail wheat shipments. Total annual wheat 
production varies greatly in all nine states. For example, total Idaho wheat production increased 
by 18.2% between 2009 and 2011, before plunging 16.3% in 2012 (relative to 2011) and then 
recovering by 6.7% in 2013 (relative to 2012).  Idaho wheat production is concentrated in the North 
and East CRDs.

Since Kansas is the leading producer of wheat in the U.S., it has significant production 
throughout the western two-thirds of the state. However, the Central and South Central CRDs have 
the largest wheat production in the state. Total Kansas wheat output fell 25.2% between 2009 and 
2011, rose 38.2% in 2012, and then fell by 16.5% in 2013.

Montana wheat production is concentrated in the North Central and Northeast CRDs, accounting 
for, on average, 77.2% of total state output.  Total Montana wheat production displayed an “up, then 
down” pattern.  Production rose 21.9% from 2009 to 2010, then fell 18.8% in 2011, followed by an 
11.3% gain in 2012 and a 4.2% increase in 2013.

North Dakota has wheat production in all nine of its CRDs. However, the Northwest plus the 
Northeast districts, on average, account for 38.7% of the state’s wheat production. Total North 
Dakota wheat output plummeted 46.9% between 2009 and 2011, soared 69.7% in 2012, but then in 
2013 declined 19.2% to its lowest level of the five-year period.

Oklahoma wheat production is concentrated in the West Central, Southwest, and North Central 
CRDs, which account for 72.6% of average Oklahoma wheat output. Total Oklahoma wheat 
production increased 59.5% in 2010 (relative to 2009), then dropped by 41.8% in 2011. Production 
in 2012 more than doubled the 2011 production, increasing by 119.9%, but declined in 2013 by 
31.9%.

Average wheat production in South Dakota is concentrated in the Central and North Central 
CRDs, accounting for about 46% of total output. Total production declined 18.9% between 2009 
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and 2011, and fell another 26% between 2011 and 2013. Wheat production in 2013 was only 60% 
of the 2009 output.

Texas wheat production, on average, is concentrated in the Northern High Plains and the 
Blacklands CRDs, which account for 59.2% of Texas output. Total production rose 108.2% in 2010 
compared with the depressed production of 2009. Production in 2011 decreased 61.3%, rose 94.3% 
in 2012, and then declined by 29% in 2013.

Washington wheat production is located almost entirely in the East Central and Southeast 
CRDs, which together constitute 86% of average wheat output. Total production increased 36.4% 
between 2009 and 2011 and then declined by about 13% in both 2012 and 2013.

LITERATURE REVIEW

Numerous studies have examined the relationship of railroad industry competition and rail pricing 
in agricultural markets. Many of the previous studies investigated the impact of deregulation after 
the passage of the Staggers Rail Act of 1980. A significant amount of the literature is regional in 
scope motivated by the fact that regional railroad networks vary, resulting in regional variation in 
intrarailroad and intermodal competition.

Several studies analyzed changes in intramodal competition and rail prices in grain transport 
following passage of the Staggers Act of 1980.  These include Adam and Anderson (1985), Babcock 
et al. (1985), Chow (1986), Fuller et al. (1987), and MacDonald (1987) (1989a) and (1989b).  In 
general, these studies found that rail wheat rates declined in nearly all corridors in the 1981-1985 
period.  Grain rates on movements by rail to the Great Lakes, Gulf of Mexico, and the Pacific Coast 
declined by large percentages.

Wilson and Wilson (2001) documented the rail rate changes that occurred as a result of 
deregulation in the 1972-1995 period. They use a nonlinear regulatory adjustment mechanism to 
represent the annual effects of deregulation over time and saw that the largest effects occurred 
shortly after deregulation. Over time, the total effects of deregulation continue to reduce rail rates 
but at a slower rate.

Wilson and Wilson found that in 1981, the effect on rail rates of the Staggers Act was a decrease 
of 10.6%, 9.9%, 1.8%, 13.7%, and 8.4% for barley, corn, sorghum, wheat, and soybeans, respectively.  
These initial effects grew over time at a decreasing rate.  By 1995, the long-term percent reduction in 
rail rates resulting from deregulation was 52%, 46%, 55%, 52%, and 42% for barley, corn, sorghum, 
wheat, and soybeans, respectively. Thus, rail deregulation had relatively small initial effects on rail 
rates but eventually developed into larger long-term effects.

Harbor (2008) took a comprehensive look at competition within the U.S. railroad industry. She 
found that the further a shipment originates from water competition, the higher the rail rates. For 
instance, corn shippers located 100 miles from a barge loading point pay 18.5% higher rates than 
those located 50 miles from water. Soybean shippers located 100 miles from water have rail rates 
13.4% higher than shipments originating 50 miles from barge loading points.

Harbor (2008) concludes that a movement from a monopoly to a duopoly causes corn rail rates 
to decline by 23.1% at 25 miles from water, 16% at 50 miles away, and 9.6% at 100 miles from 
water.  She also found that a movement from a duopoly to a triopoly causes rail rates for corn to 
decline an additional 14.2% at 25 miles from water, an additional 10.1% at 50 miles away, and an 
additional 15.7% at 100 miles from water.

Some studies have focused on the issue of railroad wheat rates in the northern Great Plains states, 
especially Montana and North Dakota. Bitzan et al. (2003) provided insight into inter- and intra-
commodity rail rate differentials observed since rates were deregulated in 1980. The study found 
that the benefits of railroad deregulation were not distributed evenly across or within commodities, 
favoring grain producers in regions with higher levels of intermodal competition.
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The study concluded that as the number of railroads serving a market decreases or that distance 
to the nearest water competition rises, rail rates increase. Thus, states dominated by a single railroad 
and also distant from water competition will have relatively high rail rates.  The authors found that 
the northern, southern, and Central Plains states had higher rail rates than the Eastern Corn Belt.

Koo et al. (1993) examined railroad pricing behavior in shipping grain from North Dakota to 
domestic and export destinations by using an econometric technique with cross sectional data from 
1984 to 1989. The authors found that cost factors play an important role in the variation of rail 
rates; distance, volume, and weight per car all have significant effects on North Dakota rail rates. 
They also observed that North Dakota’s primary grain commodities (wheat and barley) experience 
higher rates than corn and soybeans because wheat and barley are not heavily produced in water 
competitive regions.

Kwon et al. (1994) investigated the ability of railroads to practice differential pricing in a 
competitive and unregulated transportation market. They also measured the determinants of rail 
differential pricing in the Kansas wheat transportation market. Using data from the second half of 
the 1980s the authors found that railroads practice differential pricing in the unregulated Kansas 
wheat transportation market. This is the case for both the intra-Kansas and Kansas export wheat 
transportation markets, although the determinants of railroad differential prices are different in the 
two markets.

In 2007, Montana lawmakers appropriated $3 million for research into rail issues facing 
Montana, including rates and service. Cutler et al. (2009) note that Montana is distant from ports 
and population centers and, combined with the bulk nature of the commodities, means that motor 
carrier intermodal competition is ineffective. Thus, nearly 100% of Montana wheat is shipped by 
rail to the PNW (Pacific Northwest).

Cutler et al. (2009) found that in 2006, Montana and North Dakota wheat shippers paid higher 
average rail rates on a per-car basis and a per-ton basis than wheat shippers in other nearby states. 
They also found that the average revenue to variable cost ratio (R/VC) for Montana wheat shipments 
to the PNW was 253% in 2006, well above the averages for all other states with significant railroad 
wheat shipments.

Marvin Prater et al. (2010) examined the sufficiency of rail rate competition in rural areas and 
the impact of intramodal competition on rail rates. They found that rail competition for grain and 
oilseed shipments generally decreased in the 1988-2007 period. Also, revenue to variable cost ratios 
(R/VC) increased in most CRDs and the ratios were related to the number of railroads competing 
in the CRD.

Recent data are inconclusive on whether North Dakota and Montana wheat rail rates are higher 
than other states. In the 1988-2007 period, Prater et al. (2010) found that in the case of revenue 
per ton, Montana and North Dakota had the smallest increases of the 10 states evaluated. Iowa, 
Nebraska, Kansas, and South Dakota had the largest increases.

For revenue per ton-mile, Colorado, Kansas, Indiana, and Missouri had the largest increases, 
while Montana, North Dakota, and Illinois had the smallest increases.  In fact, North Dakota revenue 
per ton-mile actually decreased in the 1988-2007 period.

For R/VC ratios, the states with the largest increases were Kansas, Missouri, Colorado, and 
Nebraska.  Montana’s R/VC ratio remained virtually unchanged.  North Dakota and Indiana had the 
least increase in R/VC ratios in the 1988-2007 era.

USDA (2013) provided average grain and oilseed tariff rates per ton-mile by state for the 2006-
2010 period for 36 states. The rates ranged from 2.5 cents (South Dakota) to 9.8 cents (Michigan) 
per ton-mile. Montana and North Dakota had rates of 3.3 and 3.4 cents, respectively. Montana had 
the 7th lowest rate and North Dakota had the 8th lowest rate.  The study didn’t supply rates for wheat 
separately.

Babcock et al. (2014) estimated an empirical model of intrarailroad competition involving 
Montana, North Dakota, and Kansas using OLS (robust standard errors) and double log specifications. 
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Equations were estimated for Kansas-Montana data, North Dakota-Kansas data, and the Kansas, 
Montana, and North Dakota data for both estimation methods.

For the Kansas-Montana estimation, the total shipment weight and the distance from Montana 
wheat origins to Portland were the most significant.  Average Montana wheat rail rates were about 
the same as Kansas. For the Kansas-North Dakota estimation, the total shipment weight and the 
distance to Portland from North Dakota wheat origins were the most significant factors. North 
Dakota average rail wheat rates were higher than Kansas average rail wheat rates.

The hypothesis of the study was that the greater intrarail competition in Kansas relative to 
Montana and North Dakota would result in higher railroad wheat prices in Montana and North 
Dakota than Kansas. The hypothesis was confirmed for North Dakota but not for Montana.

MODEL

The model in this study is a variant of the model published in Koo et al. (1993) where equilibrium 
prices of rail transport of agricultural products are determined by the demand for and supply of 
rail service.  The demand for an individual railroad’s service (Qd) is a function of the price of the 
railroad’s service (P1), the price of other railroads’ transport service (P2, P3…), the prices of other 
modes of transport (A1, A2…), and other factors affecting the demand for rail transport (S). Thus, 
the demand function is equation (1).

(1)	 Qd = f(P1, P2, P3…A1, A2, S)

The supply of a railroad’s service (Qs) is a function of the price of the railroad’s service (P1), 
the price of other modes of transport (A1, A2…), and cost factors such as distance (d), shipment 
volume (v), and other variables that affect the cost of rail transport (C). Thus, the supply function 
is equation (2).

(2)	 Qs = f(P1…A1, A2, d, v, C)

In equilibrium Qd = Qs so equations (1) and (2) can be combined to form the equilibrium 
condition.  Thus, the equilibrium price equation for railroad (1) is as follows:

(3)	 P1 = f(P2, P3…,A1, A2, d, v, S, C)

If the prices of other railroads (P2, P3) are defined as intramodal competition (iac) and the prices 
of other modes (A1, A2…) are defined as intermodal competition (ioc), then equation (3) can be 
rewritten as follows:

(4)	 P1 = f(iac, ioc, d, v, S, C)

The empirical model for this study is based on equation (4).  As discussed above, intermodal 
competition is likely to be minimal for rail shipments of wheat since the shipments are long distance 
movements to domestic processing centers and export ports making truck competition ineffective.  
The average distances from Great Plains origins to barge loading locations is 364.6 miles (Mon-
tana), 381.9 miles (North Dakota), 219.9 miles (Kansas), 276.7 miles (Texas), 214.8 miles (South 
Dakota), and 186.4 miles (Oklahoma).  These distances render barge competition to be minimal to 
nonexistent.
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The only significant source of competition is intrarailroad competition. Thus, the empirical 
model is as follows:

(5)	 RATE = b0 + b1 CARWT + b2DIST + b3TSW + B4BARGE + b5HHI + e1

RATE – Railroad rate in dollars per ton-mile for the shipment
CARWT – Weight of covered hopper (pounds) 
DIST – Distance in rail miles between origins and destinations
TSW – Total shipment weight (tons)
BARGE – Distance from origins to barge loading locations
HHI – Herfindahl-Hirschman Index

In terms of hypothesis testing, CARWT, the weight of the rail car, is expected to have a negative 
relationship with the change in rail rates per ton-mile (RATE). This is because operating costs such 
as switching cost per car, labor costs, clerical costs, and various other costs are fixed per car, so the 
costs per car decrease as car weight increases. Thus, the change in rail rates per ton-mile falls as car 
weight increases.

The expected sign of the distance between origins and destinations (DIST) is negative.  A 
large amount of railroad costs are fixed with respect to distance such as loading and clerical costs, 
insurance, interest, taxes, and managerial overhead.  As these fixed costs are spread over more 
miles, the costs per mile decrease at a decreasing rate, so the change in rail rate per ton-mile falls as 
distance increases.

The variable for total shipment weight TSW reflects (a) the number of cars in the shipment 
and (b) the tons in the shipment.  Since the empirical model includes the commodity CARWT, the 
weight of the shipment reflects the impact on rail rates of increased cars in the shipment.  Because a 
large share of rail costs are fixed with respect to weight, railroads also realize economies of weight.  
Therefore, the change in rail rates per ton-mile are expected to decrease at a decreasing rate as 
weight per shipment increases.

Next, intermodal competition is proxied by highway miles to barge loading locations. Longer 
distances to water access points reduce the feasibility of truck-barge competition for rail wheat 
shipments. Thus, the theoretically expected sign of BARGE, the distance from origins to barge 
loading locations, is positive since greater distances to water ports are likely to give greater pricing 
power to the railroads. 

Finally, the Herfindahl-Hirschman Index (sum of squared market shares of each railroad in 
the CRD) is used to measure intrarailroad competition. The higher the index the greater the rail 
market concentration in the CRD. The maximum value of the index is 10,000 when one firm has 
a monopoly in the market. The index approaches zero when a market consists of a large number 
of firms of about equal size.  The theoretically expected sign of the HHI is positive.  As the index 
increases rail market concentration increases, leading to less intrarailroad competition and higher 
railroad wheat transport prices.

DATA

The principal data source for this study is the 2012 Confidential Waybill Sample compiled annually 
by the Surface Transportation Board (STB).  The sample contains shipment data from a stratified 
sample of waybills submitted by freight railroads to the STB.  Data obtained from the Confidential 
Waybill Sample include:

1.	 Revenue per ton and revenue per ton-mile
2.	 Rail car code, i.e., C113 is a 268,000-pound loaded covered hopper car, and C114 is a 

286,000-pound fully loaded covered hopper car
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3.	 Distance in rail miles from origin to destination
4.	 Origin and destination state
5.	 Originating and termination railroad
6.	 Total shipment weight (obtained by multiplying the cars in the shipment by the tons 

shipped)
U.S.D.A. AMS (Agricultural Marketing Service) classified the waybill wheat shipment data for 

the nine states by CRD, which are regions of five to 14 counties. The number of CRDs for the nine 
wheat producing states are as follows:

Idaho		  4
Kansas		  7
Minnesota		  6
Montana		  7
North Dakota	 9
Oklahoma		  5
South Dakota	 7
Texas		  7
Washington		  5
Total 		  57
USDA AMS personnel also calculated the shortest distance from the center of each CRD to the 

closest barge loading location using GPS.

EMPIRICAL RESULTS

Table 12 displays the mean, standard deviation, maximum, and minimum values of the variables.  
The mean car weight is 279,694 pounds with a minimum value of 268,000 and a maximum of 
286,000 pounds. The mean distance of the shipment from origin to destination is 853 miles with 
the minimum and maximum values of 29 and 2,719 miles, respectively. The mean weight of the 
shipment is 385,021 tons with a minimum of 62 tons and a maximum of 1,533,753. For distance 
of origin CRD to the nearest barge loading location, the mean, minimum, and maximum values are 
302, 7, and 552 miles, respectively.  The mean of the Herfindahl-Hirschman Index was 7,347 with 
minimum and maximum values of 3,197 and 10,000.

The empirical model was estimated in double log specification (denoted as Ln) and the results 
are displayed in Table 13.  Variables Ln DIST and Ln TSW have the theoretically expected negative 
signs and are highly significant (p value of < .001).  Ln BARGE has the expected positive sign and 
is statistically significant (p value of <.001).  The results for Ln CARWT had an unexpected positive 
sign, but the coefficient was non-significant.  This could be due to a lack of variation in CARWT 
since the model contained only two car weights (268,000 and 286,000 pounds), the only car sizes 
and types for rail wheat shipments.

The results for Ln HHI were surprising since it had an unexpected sign, but the coefficient was 
non-significant.  The non-significance of HHI is likely not due to multicollinearity since the partial 
correlation coefficients with the other explanatory variables are quite low.  The correlation between 
Ln HHI and Ln CARWT, Ln TSW, Ln DIST, and Ln BARGE are 0.179, 0.09, 0.02, and 0.09, 
respectively.  The lack of variation in HHI may have contributed to the lack of significance since 
nearly 40% of the 57 CRDs in the analysis were served by only one railroad.

There is the possibility that intrarailroad competition may no longer be a factor determining the 
level of railroad rates for wheat. The analysis is cross-sectional using data for 2012. It is possible 
that the underlying effect of HHI will be better captured using panel data analysis. This should be 
investigated for the years 2011, 2013, and 2014. In addition, further research should investigate the 
importance of intrarailroad competition in determining railroad rates for corn and soybeans for the 
years 2011 through 2014. 
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Table 14 lists the number of “single carrier” shipments; that is, CRDs served by one Class I 
railroad.  Idaho and North Dakota have the most “single carrier” shipments while Kansas, Minnesota, 
and Texas have the fewest. As indicated previously, the UP has 88.1% of the Idaho Class I rail 
mileage while the BNSF has 78.1% of the North Dakota mileage. In contrast, the UP and BNSF 
have roughly equal shares of the Class I rail miles in Kansas and Texas.  Minnesota is served by four 
Class I railroads and no single railroad has more than 39% of the state rail mileage.

Table 12: Variable Statistics

Variable Mean Standard 
Deviation Minimum Maximum

RATE 5.764 4.322 0.0323 57.029
CARWT 279,694 8,589 268,000 286,000
DIST 853 443 29 2,719
TSW 385,021 558,852 62 1,533,753
BARGE 302 124 7 552
HHI 7,347 1,997 3,197 10,000

RATE - Revenue per ton mile x100, measured in cents per ton-mile
CARWT - measure in pounds
DIST - measured in miles
TSW - measured in tons
BARGE - measured in miles
HHI – index number, sum of rail squared market shares in a CRD

Table 13: Model Results
Variable Coefficient t-statistic p-value
Ln CARWT 0.002157 0.08 0.936
Ln DIST -0.0422 -30.52* 0.000
Ln TSW -0.00223 -7.67* 0.000
Ln BARGE 0.00666 4.35* 0.000
Ln HHI 0.00327 -1.18 0.238
Constant 0.324074 0.98 0.328
Observations 2001
F-statistic 243.15
R2 0.38
Root MSE 0.03411

*statistically significant at .01 level	
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Table 14: Number of Shipments from CRDs That Have One Class I Railroad

State Number of Monopoly 
Shipments Rank of States*

Idaho 128 9
Kansas 0 1
Minnesota 10 2
Montana 21 4
North Dakota 103 8
Oklahoma 36 5
South Dakota 47 6
Texas 11 3
Washington 64 7

*The lower the rank number the greater the intrarailroad competition.  Fewer  
CRDs served by only one railroad.

Previous studies have indicated that the presence of two railroads in a grain transportation 
market results in lower rail transportation rates than a monopoly (MacDonald (1987, 1989a, and 
1989b) and Harbor (2008).  Table 15 indicates that a majority of the CRDs are served by at least 
two Class I railroads.  More specifically, none of the four Idaho CRDs are served by more than one 
Class I railroad but all seven Kansas CRDs are served by at least two Class I railroads.  Four of the 
six Minnesota CRDs have at least two Class I railroads, but only three of the seven Montana CRDs 
have more than one Class I railroad.  Seven of the nine North Dakota CRDs are served by two to 
three Class I railroads, but only three of the five Oklahoma CRDs have this characteristic.  Next, 
five of seven South Dakota CRDs have two to three Class I railroads, and five of the six Texas CRDs 
also have more than one Class I railroad.  Four of the five Washington CRDs are served by a single 
carrier, leaving only one that is served by more than one railroad.

The Herfindahl-Hirschman Index values (HHI) indicate substantial variation in intrarailroad 
competition within states, although it may no longer be a factor determining rail tariff rates for 
wheat during 2012. Table 16 contains the high and low HHI values of CRDs in each state and a 
percentage difference between them.  Idaho has no variation and Washington only 6.2%.  However, 
the other seven states have very large percentage differences ranging from Oklahoma (87.8%) to 
Minnesota (212.8%). Thus intrarailroad competition within states appears to be significant.
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Table 15: Intrarailroad Competition by State and CRD
State CRD Competing Railroads
Kansas 2010 UP, BNSF, Kyle
Kansas 2020 UP, BNSF
Kansas 2030 BNSF, UP
Kansas 2040 UP, BNSF
Kansas 2050 UP, BNSF
Kansas 2060 BNSF, UP
Kansas 2080 UP, BNSF
Minnesota 2710 BNSF, UP
Minnesota 2740 BNSF, UP, TCWR
Minnesota 2750 CPUS, UP
Minnesota 2760 CPUS, BNSF, UP
Montana 3020 BNSF, CP
Montana 3030 BNSF, CP
Montana 3070 BNSF, UP
North Dakota 3810 BNSF, CPUS
North Dakota 3820 BNSF, CPUS
North Dakota 3830 BNSF, CPUS
North Dakota 3840 BNSF, CPUS
North Dakota 3850 BNSF, CPUS, RRVW
North Dakota 3860 BNSF, CPUS
North Dakota 3890 BNSF, CPUS
Oklahoma 4010 BNSF, UP, ATLT
Oklahoma 4020 UP (ATLT), BNSF
Oklahoma 4030 UP, BNSF
South Dakota 4610 BNSF, CPUS
South Dakota 4620 BNSF, CPUS
South Dakota 4630 BNSF, TCWR, CPUS
South Dakota 4650 BNSF, CPUS
South Dakota 4660 BNSF, CPUS
Texas 4811 BNSF, UP
Texas 4821 BNSF, UP
Texas 4822 BNSF, UP
Texas 4840 BNSF, UP, KCS
Texas 4870 BNSF, KCS
Washington 5330 BNSF, UP

BNSF - Burlington Northern Santa Fe		  CPUS - Canadian Pacific (US)
UP - Union Pacific Railroad			   RRVW - Red River Valley and Western Railroad
Kyle - Kyle Railroad			   ATLT - AT&L Railroad
TCWR - Twin Cities and Western Railroad	 KCS - Kansas City Southern Railroad



Railroad Wheat Rates

80

Table 16: Intrastate Variation in Herfindahl-Hirschman Indexes 
	 of Crop Reporting Districts (CRD)

State Low High High-Low % 
Difference

Idaho 10,000 10,000 0
Kansas 4,839 9,279 91.80%
Minnesota 3,197 10,000 212.80%
Montana 5,008 10,000 99.70%
North Dakota 5,001 10,000 100%
Oklahoma 5,326 10,000 87.80%
South Dakota 3,834 10,000 160.80%
Texas 4,643 10,000 115.40%
Washington 9,417 10,000 6.20%

CONCLUSION

This study examined 2012 rail transportation of wheat in the nine major wheat producing states.  
Potential competition in this market is intramodal (railroad vs railroad) and intermodal (railroad vs 
truck-barge). Truck competition is not effective in this market since the shipments involve relatively 
low value, large shipment sizes, and are shipped over long distances.  The rail networks (and thus 
potential intramodal competition) vary among the nine states.  For example, the railroad network in 
Idaho, Washington, Montana, and North Dakota are largely dominated by a single Class I railroad. 
However, the rail networks of Kansas, Minnesota, Oklahoma, and Texas are characterized by a Class 
I duopoly or triopoly of roughly equal size rail firms. The latter group of states would be expected 
to have lower railroad wheat rates than the former group of states due to greater intrarailroad 
competition. Also, potentially intrarailroad competition could vary within states as well.

Intermodal competition could also vary among the nine states since the distance to the nearest 
barge loading location varies by state. For example, Minnesota wheat shippers are closer to barge 
loading locations than Montana shippers.  Thus, the overall objective of the study was to investigate 
railroad pricing behavior for the shipment of wheat. Specific goals were to (1) measure the impact 
on railroad wheat rates of the intensity of intramodal competition, (2) develop a model to measure 
the impact of railroad costs, intrarailroad competition, and intermodal competition on wheat rates in 
the major wheat production states, (3) identify and measure the major cost determinants of railroad 
wheat rates, and (4) examine the hypothesis that railroad intramodal competition varies within a 
state with implications for intrastate variation in railroad wheat rates.

The model was estimated in double log specification. The distance of the shipment from origin 
to destination (DIST) and the total shipment weight (TSW) have the expected negative sign and were 
highly significant. This indicates that rail cost variables have an impact on rail wheat rates, which 
are lower for long distance shipments and total shipment weights (more cars in the train). Distance 
to barge loading locations (BARGE) had the expected positive sign and was highly significant. 
Thus, despite the relatively long distances of most of the nine states from barge loading locations, 
intermodal competition in the form of truck-barge combinations can influence railroad rates.

The Herfindahl-Hirschman Index (HHI) had an unexpected sign but was non-significant, 
indicating that intramodal competition was no longer significant in the determination of rail tariff 
rates for wheat during 2012. When the number of shipments from CRDs served by one Class I 
railroad is compared, Idaho and North Dakota have the most “single carrier” shipments while 
Kansas, Minnesota, and Texas have the fewest. Thus, the degree of intrarailroad competition varies 
by state.
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Previous studies have found that the presence of two railroads of roughly equal size in a grain 
transportation market results in lower rail rates.  For wheat, a total of 35 CRDs (61% of the total 
CRDs) are served by at least two Class I railroads.  The presence of intrarailroad competition varies 
by state.  For example, Idaho had no CRDs served by at least two Class I railroads while all seven 
of the Kansas CRDs were served by at least two Class I railroads.

Not only varying among states, the HHIs indicate there is substantial variation of intrarailroad 
competition within states. For example, when comparing the high and low HHI of CRDs in each 
state, it was found that Idaho has no variation and Washington has only a 6.2% difference between 
the high and low HHI.  However, the other seven states have a very large percentage difference in 
HHI ranging from 87.8% (Oklahoma) to 212% (Minnesota). These differences imply that intrarail-
road competition is present within states. 

Overall, the study found that railroad cost factors, such as distance shipped and total shipment 
weight, and intermodal competition are important determinants of 2012 railroad wheat rates. The 
HHIs were not significant, but other evidence implies that intrarailroad competition is present within 
states.
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Endnotes

1.	 The Surface Transportation Board (STB) defines Class II railroads as those with operating 
revenue of $37.4 million or more and less than the Class I threshold of $467.1 million. Class III 
railroads are those with operating revenue less than $37.4 million. These thresholds are adjusted 
annually for inflation (AAR, Railroad Facts, 2014, p. 3).
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Northern Plains Grain Farm Truck 
Marketing Patterns
by Kimberly Vachal

A survey of farm operators in the Northern Plains Region was conducted to gather information 
about on-farm storage and truck markets. The objective of the study is to provide information 
about farm truck grain marketing patterns in the Northern Plains. There is no other source for 
this information. It should be complementary to other farm-to-market information and national 
commodity flow publications. Farmers may use the results for their own investment and productivity 
assessments. Local and regional planners and policy makers can use the information in calibrating 
travel demand and freight flow models for investment and asset management choices. 

INTRODUCTION

Agriculture, including traditional grain markets and value-added activities such as food processing, 
biofuels production, and specialty grains, plays a large role in the economy of North Dakota and 
neighboring states. The 2012 Agricultural Census shows that farms in these states had crop sales 
of $32 billion (U.S. Department of Agriculture 2014a). In terms of private income for 2013, North 
Dakota generated 14.5% of its state gross domestic product from agriculture. That figure was similar 
in surrounding states: 15.3% in South Dakota, 7.4% in Montana, and 5.0% in Minnesota. The share 
of economic activity attributed to agriculture in these states is far greater than the role of agriculture 
in the nation’s overall economy at 1.8% (U.S. Department of Commerce 2015).  

Farm-generated truck movement is defined as the initial movement of grain from field to market 
delivery point in the distribution chain. It is especially important to understand the transportation 
patterns and trends for these farm truck shipments in making investment and policy decisions 
related to rural and agriculture-centric economies. National commodity transport data sources, such 
as the Commodity Flow Survey and Freight Analysis Framework, do not account for this farm-
generated grain traffic (BTS 2010, Donnelly 2010). The objective of this study is to partially fill the 
information gap for the farm truck inventory and grain marketing patterns in the Northern Plains. 
Collecting truck and trip information directly from farm operators is optimal for understanding 
patterns and trends in farm-generated grain traffic. This traffic is not otherwise inventoried in 
national data sources, so it is the responsibility of individual states or other entities to collect and/
or estimate farm-generated grain traffic. Findings should be unique and complementary to other 
farm-to-market studies (Baumel 1996, Tolliver et al. 2005, Tun-Hsiang and Hart 2009) and national 
commodity flow publications. 

METHOD AND DATA

The survey method was used to collect the data needed for the study. The Upper Great Plains 
Transportation Institute (UGPTI) at North Dakota State University worked with the North Dakota 
Office of the Agricultural Statistics Service (NDASS) and the National Agricultural Statistics Service 
(NASS) of the U.S. Department of Agriculture to complete a survey of farmers in the region. The 
UGPTI was the lead agency in drafting the survey instrument and compiling survey results. 
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Mail and Phone Surveys

The survey process was a two-phase system. A stratified non-probability quota sample was used 
to select the farmers from the population for the survey. An initial mail survey was distributed to 
a sample of farmers in the NASS contact database. A follow-up phone survey of non-respondent 
farmers within that initial survey sample was completed to fulfill the sample size requirement. The 
number of surveys collected, overall and from within each of the state strata, was deemed sufficiently 
large to approximate random selection so generalizations could be made about the larger population 
within the budget and time constraints. Although random influences cannot be ruled out within this 
sample technique, confidence intervals are shown since the large regional sample is assumed to have 
normal probability distributions.

The sample was designed to collect data for a representative sample of corn, wheat, and soybean 
farms in North Dakota and the adjacent crop reporting districts (CRDs) from Montana, South 
Dakota, and Minnesota (Figure 1). The farms surveyed may produce one or all three commodities. 
The sample for the survey was derived from the larger population of farms that reportedly grew 
at least one of the major wheat, corn, and soybean crops based on the 2013 County Agricultural 
Production Survey (CAPS). This group is defined as the eligible farm population that was made up 
of the potential survey candidates. CAPS is a federally required submission used for federal farm 
program management at all jurisdictions. A random sample of 6,000 farms was drawn from the 
eligible population. 

Figure 1: Farm Truck Survey Geography

Survey Responses

The survey was mailed to these 6,000 farmers in the survey region in June 2014. The agency received 
623 responses from the mailed surveys. A month after the mailing, a phone survey of randomly 
selected non-respondent farmers was conducted. All survey efforts resulted in 3,005 valid responses 
for a response rate of 50%. Stratification of respondent figures by state and commodity show that 
a sufficient number were received to develop statistically robust results for farm-generated grain 
traffic. 
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Survey Results

The 3,005 survey responses were queried to create a profile of the farm truck fleet in the Northern 
Plains. This region is heavily involved in agriculture, with three of the states dedicating 60% of their 
land use to crop production. The highest shares were in North Dakota and South Dakota, where 87% 
and 88% of the land is in crop production, respectively. Montana has about 63% of its land area in 
crop production. Minnesota has the lowest share of its land in crop production, at 47%. The sample 
respondent group included a good representation of crops across the region (Table 1).

Table 1: Respondents Reporting Crop Production, by State and Commodity
State Wheat Corn Soybean
Minnesota 38% 71% 57%
Montana 80% 13% <1%
North Dakota 70% 55% 27%
South Dakota 26% 80% 47%

Overall 51% 61% 37%

n=3,005

The respondent farm size averaged 750 harvested acres of corn, soybeans and wheat in 2013. 
The harvested acres for the three commodities ranged from two to 28,000 acres. A distribution of 
responses across quadrants shows about 22% to 28% of response farms in each of the farm size 
groups, defined as (1) less than 300 harvested acres, (2) 301 to 750 harvested acres, (3) 751 to 1,500 
harvested acres, and (4) 1,501 or more harvested acres. The distribution across the farm group strata 
shows good representation of each group (Table 2).

Table 2: Farm Group Characteristics

Farm Group Count Percent
Average Har-
vested Acres

300 acres or fewer 706 26% 156
301 to 750 acres 594 22% 479
751 to 1,500 acres 772 28% 1,057
1,501 acres or more 672 24% 3,079
not reported=261

Economies of size in the farm industry have been a key component in the continued evolution of this 
mature industry, especially for the commodity grains that are at the core of this study. Average farm 
size continues to increase (NASS 2014b). The ability of farms to spread costs, such as equipment 
and labor, over more acres is increasingly important with technology-enhanced farming and more 
expensive equipment needed to adopt it. The farm size has also been shown to relate positively to 
truck size, based on the economics of farm truck fleet decisions and with what has been observed in 
the market (Berwick et al. 2003).

MARKETING PATTERNS

Farm markets vary substantially across respondents because transportation for these major grains 
can simply be a short haul to on-farm storage or a longer haul to an elevator, feedlot, or processor 
facilities. The transportation resources consumed do reveal patterns for individual commodities. 
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In addition, responses to on-farm storage questions provide some insight into the timing of grain 
deliveries. Overall regional marketing patterns are useful. In addition, insight is provided in the 
market patterns among state and farm group strata. Statistical tests confirm that the marketing 
patterns do vary significantly for all commodities across farm group strata when considering the 
share of production transported directly to market when harvested for wheat [F(1,566)=5.13, 
ρ=<.002], corn [F(1,912)=12.99, ρ=<.001], and soybeans [F(1,796)=6.77, ρ=<.002] are significant 
at the 99th percentile based on generalized linear model results. Significant variance is also found 
among states for the wheat [F(1,591)=22.28, ρ=<.001] and soybeans [F(1,827)=4.97, ρ=<.002] 
marketing patterns, considering the share delivered directly from field to market.1

On-Farm Storage 

On-farm storage for corn, soybeans, or wheat was confirmed by 83% of the respondent farms. The 
availability of on-farm storage was not answered in 10% of the surveys and was left blank in the 
remaining 7%. South Dakota had lowest share of farms with on-farm storage for corn, soybeans, or 
wheat at 84%. In North Dakota and Montana, 94% of the respondents confirmed on-farm storage 
availability. Minnesota had on-farm storage reported in 84% of responses. The role of on-farm 
storage is important in understanding farm-generated crop traffic. On-farm storage provides an 
easily accessible option to delay grain delivery beyond the harvest season. South Dakota reported 
the highest average storage capacity and Montana the lowest (Table 3).

Table 3: Corn, Soybean and Wheat Storage Capacity, by State

Crop Reporting Districts n
Storage Ratio, Bushels 
per Harvested Acre*

Average On-Farm 
Storage, Bushels*

Western Minnesota 769 77 156,276
Eastern Montana      360 70 103,904
All North Dakota 864 63 222,607
Northern South Dakota 751 69 374,173

*Weighted by Harvested Acres

On-farm storage is concentrated on the larger farms in terms of average capacity. In terms 
of flexibility, however, the smaller farms appear to be more able to adapt when increased on-
farm storage is needed (Table 4). For the smallest farms, the ratio of storage capacity bushels per 
harvested acre was 151. The largest farms have an average of 62 bushels of on-farm storage for 
each harvested acre. The difference in the storage density may be related to expectations for yield 
among commodities. The median on-farm storage capacity was 50,000 bushels, with 25% reporting 
fewer than 20,000 bushels. A scatterplot illustrates the distribution for the responses with storage of 
500,000 bushels or less (Figure 2). The survey had 28 responses from farms with more than a half-
million bushels of storage. Among the facilities, 11 were in North Dakota, 10 in the northern South 
Dakota CRDs, six in the western Minnesota region, and a single location in eastern Montana. The 
higher storage volumes were attributed to the large farms of over 1,500 acres in 26 of the 28 cases.
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Figure 2:	 Scatterplot of Reported On-Farm Storage Capacity, Farms with 
	 500,000 Bushels or Less

The storage capacity density, measured by farms as bushels produced per harvested acre (includ-
ing corn, soybean, and wheat), was inversely related to farm size (Table 4). The storage capacity 
volume, however, is substantially greater for the larger farms. Average on-farm storage was 329,097 
bushels of corn, soybean, and wheat capacity for farms of 1,501 acres or more. The smallest farms 
averaged only 26,252 bushels of capacity for the three commodities.

Table 4: Corn, Soybean and Wheat Storage Capacity, by Farm Group

Farm Group n

Share 
in Farm 
Groups

Average Storage Ratio, 
Bushels per Harvested 

Acre*
Average On-Farm 
Storage, Bushels*

300 acres or fewer 706 26% 151 26,252
301 to 750 acres 594 22% 82 40,003
751 to 1,500 acres 772 28% 73 80,718
1,501 acres or more 672 24% 62 329,097

*Weighted by Harvested Acres

On-farm storage is concentrated on the larger farms in terms of average capacity. In terms 
of flexibility, however, the smaller farms appear to be more able to adapt when increased on-
farm storage is needed (Table 4). For the smallest farms, the ratio of storage capacity bushels per 
harvested acre was 151. The largest farms have an average of 62 bushels of on-farm storage for each 
harvested acre. The difference in the storage density may be related to expectations for yield among 
commodities. For instance, average corn yield in 2013 was 110 bushels per acre compared with 31 
and 45 bushels per acre for soybean and wheat, respectively (NASS 2014a). Survey responses do 
support this premise for the larger farms reporting more harvested corn acres. Among farms larger 
than 1,501 acres reporting at least half of their harvested acres were corn, the ratio of storage bushels 
to harvested acres was 75 (n=198) 95% CI [50, 59] compared with 54 (n=436) 95% CI [69, 81] for 
farms attributing less than half their harvested acres to corn. Understanding farm-based storage 
capacity is important in discussing and predicting transportation scenarios for the industry.

The role of on-farm storage is important in understanding farm-generated crop traffic. On-farm 
storage provides an easily accessible option to delay grain delivery beyond the harvest season. In 
addition to the insight gained from the higher-yield corn stratification of the responses regarding 
the density of farm storage capacity, farmers were asked the share of the crop production delivered 
directly to market from the field at harvest time. Responses weighted by bushels produced, showed 
36% of wheat (n=1,518) 95% CI [32%, 39%] and 32% of corn (n=1,835) 95% CI [30%, 36%] 
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was delivered directly to an elevator, feedlot, or processor market. The average share of soybeans 
delivered directly to market from field is substantially higher at 66% (n=1,748) 95% CI [63%, 69%]. 
Among the state strata, the adjacent South Dakota farmers reported delivering the largest share of 
wheat directly to market at harvest at 50%, compared with 31%, 33%, and 36% for Minnesota, 
Montana, and North Dakota, respectively. On average, corn share delivered to market at harvest 
ranged from 32% in South Dakota to 39% in Montana. Minnesota farmers reported an average 34% 
and North Dakota farmers reported 33%. All averages are weighted based on respondents’ reported 
production of the commodity. 

A differentiation in the timing for crop delivery can also be recognized when considering the 
farm group strata. Table 2 shows that among the farm groups, the larger farms tend to deliver a 
smaller share of their production directly to market at harvest. Table 5 shows a larger proportion of 
soybeans are delivered directly to market by farms of all sizes, but the smallest share is for the largest 
farms. With a continued trend toward larger farms, note the storage propensity for larger farms is 
a factor in the farm-generated crop traffic. Operational factors, such as seasonal load regulations, 
may require additional consideration as the industry’s production and marketing practices continue 
to evolve.   

Table 5: Crop Delivery from Field to Market, by Farm Group

Commodity Farm Group n Average
Standard 

Error2
95% Confidence 

Limit

Wheat

300 acres or fewer 303 45% 3% 39% 52%
301 to 750 acres 316 43% 3% 37% 48%
751 to 1,500 acres 455 39% 2% 35% 42%
1,501 acres or more 441 33% 3% 28% 38%

Corn

300 acres or fewer 391 47% 3% 42% 52%
301 to 750 acres 372 49% 2% 45% 54%
751 to 1,500 acres 553 37% 2% 33% 40%
1,501 acres or more 514 29% 2% 24% 33%

Soybeans

300 acres or fewer 313 71% 3% 65% 78%
301 to 750 acres 375 74% 2% 69% 78%
751 to 1,500 acres 548 70% 2% 66% 74%
1,501 acres or more 508 62% 2% 58% 67%

Note: Averages Weighted by Bushels Produced

Regional Markets

Farmers were asked to describe their corn, soybean, and wheat marketing patterns in 2013. For 
wheat harvested, farmers reported that as of May 1, 2014, about 16% of bushels produced remained 
in on-farm storage with the largest share, 79%, transported to elevators (Table 6). A small 2% share 
was hauled to processors. Soybean marketing patterns were similar for the share moved to elevators, 
but processors were a larger receiver at 9%. Farmers were less likely to use on-farm storage for 
soybeans than for wheat or corn. About half of the corn grown during 2013 was sold to an elevator. 
Similar to wheat, 17% of the 2013 corn crop was held in on-farm storage. Feed use accounted for 
about 14%, with the largest share being used for feed on farm.
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Table 6: Regional Markets, 2013
Wheat Corn Soybean

n= 1521 1821 1115
Market Average 95% CI Average 95% CI Average 95% CI
Elevator 79% 77%, 81% 54% 51%, 58% 79% 77%, 82%
Processor 2% 1%, 4% 11% 8%, 13% 9% 6%, 13%
Feed Lot 0% 0%, 0% 4% 2%, 5% 0% 0%, 1%
Feed Own 0% 0%, 1% 10% 8%, 13% 0% 0%, 1%
Storage 16% 14%, 18% 17% 14%, 20% 7% 5%, 10%
Other 2% 1%, 3% 4% 0%, 8% 4% 0%, 8%

Markets, State Strata. Minnesota farmers in the western CRDs report a smaller share of wheat 
and soybeans delivered to elevators compared with the regional market average (Table 7). For 
wheat, a larger share of the 2013 crop was held on-farm at the time of the survey. A larger share of 
corn had been sold to elevators versus the regional average, with less used for feed on their own 
farms.

Table 7: Regional Markets for Wheat Produced in 2013, Minnesota
Wheat Corn Soybean

n= 319 595 678
Market Average 95% CI Average 95% CI Average 95% CI
Elevator 70% 63%, 76% 61% 56%, 65% 76% 73%, 80%
Processor 4% 0%, 8% 10% 5%, 14% 9% 6%, 13%
Feed Lot 1% 0%, 2% 5% 2%, 8% 1% 0%, 2%
Feed Own 0% 0%, 0% 6% 4%, 9% 0% 0%, 0%
Storage 23% 16%, 30% 17% 14%, 21% 8% 5%, 10%
Other 2% 0%, 3% 1% 0%, 1% 6% 1%, 10%

Montana farmers in the eastern CRDs had sold a larger share of their 2013 crop to elevators by 
May 1, 2014, compared with the regional average (Table 8). They held a smaller share in storage than 
other farmers in North Dakota and adjacent state CRDs. The limited response for corn production 
shows a much larger proportion of the corn grown in Montana is marketed to feedlots than in the 
remainder of the region. Montana farmers sold only about one in five bushels of corn to elevators 
compared with about one in two for the region on average.
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Table 8: Regional Markets for Wheat Produced in 2013, Montana
Wheat Corn

n= 327 54
Market Average 95% CI Average 95% CI
Elevator 83% 79%, 87% 21% 51%, 58%
Processor 3% 0%, 7% 4% 8%, 13%
Feed Lot 0% 0%, 0% 54% 2%, 5%
Feed Own 1% 0%, 1% 16% 8%, 13%
Storage 12% 8%, 16% 4% 14%, 20%
Other 1% 0%, 2% 2% 0%, 8%

North Dakota mirrors the regional averages with regard to wheat, marketing 79% to elevators 
and storing 16% on-farm (Table 9). North Dakota farmers were more likely to sell corn to elevators 
and processors compared with the regional average, with a larger share remaining on-farm at the 
time of the survey. With regard to soybeans, North Dakota sold a larger share to elevators compared 
with the regional average. This soybean market pattern is expected given the longer distances for 
North Dakota farmers from soybean growing regions to processing plants in Minnesota and South 
Dakota. North Dakota elevators are strong suppliers to the Pacific Northwest soybean export market.

Table 9: Wheat, Corn, and Soybean Markets for 2013 Production, North Dakota
Wheat Corn Soybean

n= 655 522 527
Market Average 95% CI Average 95% CI Average 95% CI
Elevator 79% 77%, 82% 59% 55%, 64% 89% 87%, 91%
Processor 2% 0%, 3% 9% 5%, 13% 2% 0%, 3%
Feed Lot 0% 0%, 0% 2% 0%, 3% 1% 0%, 3%
Feed Own 0% 0%, 1% 3% 2%, 5% 0% 0%, 0%
Storage 16% 13%, 19% 23% 18%, 29% 6% 3%, 9%
Other 3% 1%, 4% 4% 0%, 7% 3% 1%, 5%

South Dakota’s northern CRDs marketed a larger share of wheat and soybeans to elevators 
compared with the region on average with both crops at 82% (Table 10). South Dakota farmers had 
the smallest share of each crop held on-farm compared with the region. The figures are, however, 
close to the regional averages. South Dakota farmers sold a relatively smaller share of their corn, 
49%, to elevators, and used a substantially larger share, 16%, for feed on their own farms.
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Table 10: Wheat, Corn, and Soybean Markets for 2013 Production, South Dakota
Wheat Corn Soybean

n= 220 669 541
Market Average 95% CI Average 95% CI Average 95% CI
Elevator 82% 78%, 86% 49% 43%, 55% 82% 78%, 85%
Processor 1% 0%, 2% 12% 8%, 16% 10% 6%, 15%
Feed Lot 0% 0%, 0% 3% 1%, 5% 0% 0%, 0%
Feed Own 0% 0%, 0% 16% 12%, 21% 0% 0%, 1%
Storage 15% 10%, 20% 13% 10%, 17% 6% 4%, 9%
Other 2% 0%, 4% 6% 0%, 14% 2% 0%, 3%

Markets, Farm Group Strata. Farm Group 1, including farms with fewer than 300 acres, held a 
larger share of wheat, at 23%, in storage than the region average. These farm storage practices may 
be related to specialty or small scale milling operations that tend to have limited on-site inventory 
or to individual farmer decisions to hold inventory multiple years. Wheat that graded with higher 
milling quality characteristics has historically garnered a premium during years where weather or 
other factors lead to below average crop quality. The corn market is also somewhat different from 
the region for these farms using corn for feed, 19%, nearly double the share for the regional average. 
These smaller farms also report storing less of their corn and an equal share of their soybean crop, 
relative to the regional averages (Table 11).

Table 11: Wheat, Corn, and Soybean Markets for 2013 Production, Farm Group 1
Wheat Corn Soybean

n= 303 392 314
Market Average 95% CI Average 95% CI Average 95% CI
Elevator 72% 68%, 77% 56% 52%, 60% 85% 81%, 90%
Processor 1% 0%, 2% 3% 1%, 6% 5% 1%, 9%
Feed Lot 0% 0%, 1% 9% 6%, 13% 0% 0%, 0%
Feed Own 0% 0%, 1% 19% 15%, 23% 0% 0%, 1%
Storage 23% 16%, 29% 11% 8%, 14% 7% 1%, 12%
Other 3% 0%, 6% 2% 0%, 3% 3% 0%, 5%

Farm Group 2, which includes farms sized 301 to 750 harvested acres, was close to the regional 
averages in its wheat marketing. This group did report selling a larger share of each commodity 
to elevators compared with the regional average. With 80% of wheat, 62% of corn and 88% of 
soybeans marketed at the elevator, the shares are one percentage point higher for wheat and nine and 
eight percentage points higher than the region average for corn, and soybeans, respectively (Table 
12).
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Table 12: Wheat, Corn, and Soybean Markets for 2013 Production, Farm Group 2
Wheat Corn Soybean

n= 313 372 375
Market Average 95% CI Average 95% CI Average 95% CI
Elevator 80% 76%, 83% 62% 57%, 66% 88% 85%, 90%
Processor 1% 0%, 3% 6% 2%, 9% 5% 1%, 8%
Feed Lot 0% 0%, 0% 4% 0%, 8% 0% 0%, 0%
Feed Own 0% 0%, 1% 15% 10%, 19% 0% 0%, 1%
Storage 16% 12%, 20% 13% 10%, 17% 7% 4%, 10%
Other 2% 1%, 4% 1% 0%, 1% 0% 0%, 1%

Farms Between 751 and 1,500 acres comprise the operations in Farm Group 3. This group is similar 
to the regional market average in the distribution of corn, soybeans, and wheat. Elevators are the 
primary market for each commodity. Corn has the greatest diversification with regard to markets 
(Table 13).

Table 13: Wheat, Corn, and Soybean Markets for 2013 Production, Farm Group 3
Wheat Corn Soybean

n= 457 555 550
Market Average 95% CI Average 95% CI Average 95% CI
Elevator 76% 73%, 79% 57% 53%, 60% 81% 78%, 83%
Processor 3% 1%, 5% 9% 6%, 11% 8% 5%, 12%
Feed Lot 0% 0%, 1% 3% 2%, 4% 1% 0%, 2%
Feed Own 0% 0%, 1% 10% 7%, 13% 0% 0%, 0%
Storage 18% 15%, 21% 19% 16%, 23% 7% 5%, 8%
Other 2% 1%, 4% 3% 1%, 4% 3% 2%, 5%

Farm Group 4 includes the largest operations among the respondent farms, at least 1,501 acres. 
These operations are also similar to the regional market distributions. Farm Group 4 sells slightly 
more than the regional average share of its wheat and soybeans to elevators (Table 14). The average 
corn shares sold to elevators and for own feed use are slightly lower while the corn share sold to 
processors is above the regional average. Corn does show a greater variability with regard to market 
distribution, considering the standard errors. Figures for each commodity market sales share fall 
within the regional 95% confidence intervals. 
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Table 14: Wheat, Corn, and Soybean Markets for 2013 Production, Farm Group 4
Wheat Corn Soybean

n= 441 516 508
Market Average 95% CI Average 95% CI Average 95% CI
Elevator 80% 77%, 83% 53% 48%, 58% 82% 79%, 84%
Processor 2% 1%, 4% 12% 8%, 15% 7% 4%, 10%
Feed Lot 0% 0%, 1% 4% 2%, 6% 1% 0%, 2%
Feed Own 0% 0%, 1% 9% 6%, 13% 0% 0%, 1%
Storage 15% 12%, 18% 17% 14%, 21% 7% 4%, 9%
Other 2% 1%, 3% 5% 0%, 11% 4% 1%, 6%

SUMMARY

Agriculture is a large part of the economy in the Northern Plains region. Approximately 800 million 
bushels, or 30 million tons, of grain was moved to subterminal elevator facilities and local agricultural 
processors in 2010. These grain movements generate an estimated 900 million farm truck ton-miles. 
The objective of this study was to provide information about grain marketing patterns in the region 
since there is no other source for the information. 

A survey of 6,000 farm operators in this Northern Plains region was conducted to gather 
information about transportation of crops and on-farm storage capacity. The survey was mailed to a 
sample of farmers and followed up with a phone survey of non-respondents. The survey responses 
represent corn, wheat, and soybean farms in North Dakota and the adjacent crop reporting districts.

The storage capacity density, measured by farm as bushels produced per harvested acre 
(including corn, soybeans, and wheat), was inversely related to the farm size. Storage capacity 
volume was substantially greater for the larger farms. Average on-farm storage was 26,525 bushels 
for the smallest farms and 329,097 bushels among the largest farms. Storage density for the smallest 
farms, considering a ratio of storage capacity bushels per harvested acre, was 151 and an average 
62 bushels for the largest farms. On-farm storage provides an easily accessible option for delaying 
grain delivery beyond the harvest season. Responses, weighted by bushels produced, showed 36% 
of wheat, 32% of corn and 66% of soybeans were delivered directly to market from the field at 
harvest time. 

Regarding shipment beyond the farm, about 79% of wheat and soybean production was 
delivered elevators. The share for corn to elevators was only 54%. Corn had the most diversity in 
terms of market patterns among the states and farm size strata with on-farm storage and feed use 
varying substantially among groups. Survey results reveal differences in marketing patterns among 
commodities. In addition, marketing differs significantly among states and by farm size. Farm grain 
truck transportation demand is expected to continue to evolve with agronomic advancements and 
continued industry consolidation. Findings will be useful in updating farm-to-market truck flows 
that are used to assess economic competitiveness, calibrate local traffic demand, and plan future 
investments. 

Endnotes

1.	 Note that in this paper ‘state’ always refers to the group of CRDs surveyed from each respective 
state in the cases of Minnesota, Montana, and South Dakota so caution should be used in 
extrapolating any statewide figures based on the survey results for these states.

2.	 Standard Error figures are standard error of the mean for all reported survey statistics.
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Canada’s Grain Handling and Transportation 
System: A GIS-based Evaluation of Potential 
Policy Changes
by Savannah Gleim and James Nolan

This research re-examines both transportation allocation and infrastructure capacity problems 
associated with moving grain from the Western Canada to export position. The analysis is conducted 
with geographic information system software using grain industry data. In contrast with historical 
grain industry logistics methods, the analysis and simulation framework allows us to re-examine 
logistic solutions in this vast supply chain in the interest of improving overall delivery efficiency. 
In addition, we find that rail network capacity should not constrain any major expansion of grain 
movement in the system over the foreseeable future.  

INTRODUCTION

While rooted in Canada’s history, the transportation of Prairie wheat from grain elevators across 
Western Canada continues to be an issue of contention for Canadian agriculture. Recent changes in 
the sector have only deepened this concern. In August 2012, the Canadian Wheat Board (CWB), an 
organization that was the sole international marketer of Canadian wheat, barley, and durum since 
1935 was stripped of this function. This event also transferred grain logistics oversight over to grain 
handling firms operating in Canada. Since Western Canada is a major exporter of grain, the handling 
system will continue to rely on efficient logistics to move these commodities for export. Now that 
the CWB no longer controls the allocation and marketing of these grains, significant changes have 
and will continue to occur within the future logistics and allocation system for Western Canadian 
grain. 

Up until the federal government’s decision to stop the marketing function of the CWB, it was 
the largest marketer of wheat and barley in the world (Canadian Wheat Board 2011). Marketing 
grain to over 70 countries meant that the CWB played a major role in the Canadian grain sector. 
For example, in the 2011/12 crop year, the CWB exported approximately 21.3 million metric tonnes 
(MMT) of grain (Canadian Grain Commission 2012). Of those exports, wheat was the largest export 
grain, with 15.4 MMT moved through Western Canada. With the CWB policy change, the export of 
Canadian grain will necessitate an updated and possibly quite different grain logistics system. The 
vastness of the grain sector means that transition is unlikely to be smooth.

As Western Canada’s grain handlers absorb more grains into their new supply chains, their 
individual and collective transportation problems will shift and become more complex. We expect 
that novel logistics solutions will need to be identified in order to efficiently move primary export 
grains across the three Prairie provinces, using the two Class 1 Canadian railways to connect to the 
four major Western Canadian export points (Vancouver, Prince Rupert, Thunder Bay, and Churchill). 
Considering the collectivist goals of the CWB, future grain transportation solutions will necessarily 
shift emphasis away from a farmer profitability focus over to the profitability of grain handling firms 
themselves.

Currently, it is not well understood how any such changes in Canadian grain logistics will 
affect overall grain movement and system efficiency. To this end, a spatially oriented optimization 
analysis is developed in an attempt to literally map out potential evolution of the new grain handling 
and transportation system in Western Canada. Thus, the primary contribution of this research is 
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to simulate a likely future grain handling logistics system whereby multiple grain companies are 
responsible for transporting Canadian grain. 

GRAIN LOGISTICS IN CANADA

To begin this research, it is useful to understand how grain logistics were conducted under the 
former CWB. One major point worth highlighting is that CWB grain logistics were based solely 
on minimizing system transportation costs, in the form of rail freight rates paid by each individual 
farmer. As a collectivist solution imposed by a monopoly grain marketer, CWB optimization 
objectives will likely contrast with the new competitive marketing environment for grain in Canada. 
Due to this, our model is designed at the outset to better align with the objectives of individual grain 
handling firms as they seek to maximize profit in the new system. On this point, our model assumes 
that time (as an opportunity cost) is the critical factor governing the movement of grain within the 
transportation system.  

The CWB was created by the federal government in Canada as a means to maximize returns 
to grain producers through single-desk marketing of grain purchases, sales, and exports (Schmitz 
and Furtan 2000). In 1995, the CWB changed its grain logistics system to more formally reflect the 
value of grain at each grain delivery location across the region. The CWB did this by computing 
a hypothetical shadow price known for delivered grain. This algorithm was called the freight 
adjustment factor, or FAF.

Mostly based on forecasted demand data, the FAF was a rate adjustment that signalled to every 
farmer in the region the lowest cost direction to move their grain. Each year, a system-wide FAF 
was computed to capture not only the flow of grain trade for that year, but also to reflect any other 
export capacity constraints (Gray 1996). As a single optimization problem that was applied to the 
entire region altogether, the CWB’s logistics system under FAF effectively minimized the collective 
costs of grain freight for all producers simultaneously.

FAF priced away any inherent locational advantages among farmers, particularly those located 
along the hypothetical boundary of the major Prairie grain catchment area. In fact, the CWB 
effectively divided Prairie farmers in West and East catchments, so defined by the lesser cost of 
FAF plus freight to Thunder Bay, or the freight rate to Vancouver. As the CWB possessed complete 
logistical control over almost all Western Canadian grains, the FAF shadow price signal allocated 
yearly grain movement either to the East (Thunder Bay) or West (Vancouver/Price Rupert) as needed, 
subject to the constraints inherent in the supporting rail system. In summary, CWB logistics at the 
time of their elimination from this function was designed to minimize collective (not individual) 
freight rate payouts across all farmers in the region.

In some contrast to the collectively driven logistics methods used by the CWB, in this research 
the transportation problem for grain movement in a new era of multiple competing grain marketers 
will be studied using explicit spatial analysis. The scale of the Canadian grain transportation problem 
is enormous, spanning four provinces with numerous delivery points (elevators) and a few distant 
port locations. Fortunately, geographic information systems (GIS) software can be programmed 
to solve as well as map out complex spatial transportation solutions. Here, ArcGIS software is 
programmed to use a standard vehicle routing problem (VRP) toolkit. In our model, the solution 
identifies the least costly (based on time transported) set of grain transportation routes that allocate 
(monthly) wheat supplies from across the Prairie elevator system to meet particular (monthly) 
export demands at each port.

In a competitive grain transportation market, grain handlers incur both the benefits and costs 
associated with delivering grain to port within a particular time frame. For instance, if a grain 
handling firm can deliver grain to port before a set date, it receives what is known as a dispatch 
payment. However, if grain is not delivered within the time frame of the contract, in Canada a 
demurrage fee (on FOB contracts) is charged to the grain handling firm and is often passed onto 
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farmers (Wilson et al. 2004). In order to get a better sense of the importance of delivery reliability, 
for the 2009/10 crop year, grain handling firms were paid C$6.0 million in dispatch, whereas for 
2010/11, they incurred a net of C$40.6 million in demurrage fees (Quorum Corp 2012). It is for 
these reasons that the movement of grain across the Prairies in the post CWB era will very likely 
focus on reducing the risks of incurring additional delivery costs and maintaining reliability, rather 
than simply focusing on reducing the collective farmer costs of grain transportation.

METHODOLOGY

The scale of the problem to be solved here is large and is accomplished using appropriate software, 
which reduces the time and complexity of finding optimal solutions. Since this particular logistics 
problem occurs over a large region, our spatial data interface uses GIS software. Essentially, GIS 
develops an interactive transportation network map that allows the researcher to create both a 
visual and numerical solution for the programmed transportation problem. What follows is a basic 
description of the analysis and data used here, but the interested reader is referred to Gleim (2014) 
for additional details. 

Spatial analysis begins with GIS software interpreting the relationships between spatial data 
layers. Layers of points, lines, or polygons, which all share the same physical coordinates are virtually 
stacked on top of one another and then linked together through their geographic coordinates. As 
information is overlaid, the map begins to take shape and various relationships can form between 
the different elements or properties of the layers (Scurry 1998).

One of the most widely used GIS software packages in North America is ArcGIS. The analytic 
portion of this research is conducted using ArcGIS optimization tools. The Network Analyst (NA) 
toolkit in ArcGIS solves network data problems comprising either of the fastest, shortest, closest, 
best routes or locations within a specified geographic region. Examples include routing vehicles to a 
nearest facility, identifying a particular service area for a region, or routing a set of vehicles for the 
delivery of goods. The transportation problem developed in this research requires a tool to optimize 
grain routings and minimize time costs of transport, both of which are within the capabilities of the 
vehicle routing problem (VRP) tool in NA. 

DATA STRUCTURES

To perform a VRP within ArcGIS, data describing the transportation network and its associated 
constraints are needed. These data should possess three key attributes: cost, descriptors, and 
restrictions (ESRI 2012a). Cost attribute data are values associated with the edges and lines of the 
network dataset. The VRP requires a minimum of one cost attribute to solve the problem. Descriptors 
are information attributes that do not contain actual measurements, but other classes and properties 
use this information to select data for calculations. Descriptor examples are the number of lanes 
within a segment of highway, direction of traffic, or whether a transportation path permits a certain 
mode. Finally, restriction data are used to prohibit movements along a network. For example, there 
could be restrictions for movements around a construction site, restrictions on left turns, and limits 
for one-way streets. (ESRI 2012b). 

Within all GIS programs, input data layers are required and output data layers are created. 
In ArcGIS, the VRP can use up to 13 classes of data layers. In this research, just four layers are 
necessary. These are 1) orders, 2) depots, 3) routes, and 4) route zones. And from each VRP emerge 
a number of key outputs. These are added to the order, depot, and route layers. These solutions are 
descriptive results, including items like the route name to which an order point is assigned along 
with the sequence in which orders were picked up. Cost data are also recorded, such as the time and 
distance travelled between order points and the total costs of routings. By virtue of the software, 
these VRP results are readily converted into new visual or mapping representations to display the 
set of optimized solutions (ESRI 2012c).
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Once the network dataset, classes, and parameters have been input, the objective function 
associated with the VRP can be solved. While the ArcGIS VRP algorithm is proprietary, the VRP 
used here observes time windows and relies on a modified travelling salesman problem (TSP) to 
fit the constraints of the set VRP. This means the VRP solver works in two parts. First the origin-
destination (OD) matrix shortest path for cost is solved. Within ArcGIS, these paths are identified 
using Dijkstra’s algorithm (ESRI 2013). Next, a Tabu Search (TS) is used to find an improved 
sequence of routes. Thus, the VRP algorithm within ArcGIS uses a combination of Dijsktra’s 
algorithm to generate an initial low-cost feasible solution, which is subsequently checked and 
improved upon through iterations of Tabu search to further minimize transportation costs in order to 
optimize the solution of the VRP.

To construct a spatial VRP of western grain transportation, data representing demands, supplies, 
and networks serving grain movement are needed. The data used to build our base model were 
collected from a time prior to the August 2012 removal of the CWB’s primary marketing function. 
We used monthly data from the crop years 2009/10 through 2010/11. By choosing two consecutive 
crop years near the end of CWB influence on logistics, our base VRP model should closely match 
actual patterns of supply and demand in the grain handling system. For these years, approximately 
12-13 MMT tonnes of wheat alone were exported from Western Canada, which is a level close to 
average for the last decade (Canadian Grain Commission 2012).

Since the scale of this research problem is large and the relevant base model data and analysis 
covers 24 consecutive months, only essential data classes and their properties are used in order to 
reduce the degree of difficulty in VRP estimation. Thus, our model is built over four data classes: 
order points (elevator delivery points), depots (port facilities), the network dataset (railway network), 
and routes. We assume there are multiple order points for each month representing primary producer 
deliveries across Western Canada, while the four port locations receive goods over the two Class 1 
railway networks. The base grain handling configuration is shown in Figure 1. 

Figure 1: Model Classes and Scale 

Maps were created using data from the following sources (Canadian Grain Commission, 2012b; Oak Ridge 
National Laboratory, 2012; DMTI Spatial, 2012; Canadian Wheat Board, 2011).
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The locations reported by the CWB data become the order locations for the VRP. The data are 
further aggregated into a total available supply of deliveries per location. The total monthly supplies 
of wheat (in tonnes) for each order location account for all the wheat reported as transported by rail 
to the ports. Together, the CWB data and total grain tonnes reported by the CGC are combined to 
form the order supply location list for the VRP. Then to incorporate the deliveries of grain producers 
from order points, map coordinates are used to represent physical proximity to the railway network 
and distance from port. As constructed, the final order point data are then used by the ArcGIS VRP 
to solve for new routings for the 12.6 (2009/2010) and 10.9 (2010/2011) MMTs of wheat actually 
delivered each year in the Western Canadian handling system.

Port facilities demand wheat to fill their monthly export orders, so the ports are represented 
in the VRP as depots, and are the aggregated volume demanded by each port over each railway 
network. To account for port export demands in the VRP in ArcGIS, the same monthly CGC data 
on the volume of wheat moved from Prairie origins to port for export are used. As an example, in 
August of 2009, the CGC reported 283,384 tonnes of wheat moved by railway from Prairies to 
Vancouver. Thus, the export demand for Vancouver over the month of August 2009 is set at 283,384 
tonnes.

The railway data used here combines the Oak Ridge National Laboratory North American rail-
way network and CanMap railway data. The ORNL railway network has multiple link attributes 
for each segment of railway, including distance, track ownership, access, main line class, access 
control (Peterson 2003), and track type (ORNL 2012). The data from CanMAP are added to fill 
any gaps within the ORNL railway network (DMTI Spatial 2012). Together, the two railway data 
sources generate over 27,291 km of track operated in the region by Class 1 railways and 3,440 km 
by short line rail. The network dataset also constrains access to each track by its owner. Since the 
VRP utilizes time as the optimization criterion, the code was set to allow only one train to travel over 
a segment of rail network at a time (ESRI 2013).

In this manner, we develop a formal transportation problem that maps out modern logistics 
solutions in the Canadian grain handling system. Using appropriate data about the rail network and 
grain elevator system, we formulate a VRP and use ArcGIS and its software capability. The objec-
tive function of our new VRP for grain is to minimize the total travel time of rail routings subject 
to the constraints of supplies, demands, routes, network access, speeds, and space in the network. 
In essence, the VRP solved here minimizes the sum of commodity travel times while maximizing 
demand throughput. 

BASE RESULTS

Considering post CWB grain logistics, we focus on developing a more reasonable, modern, and 
market driven grain transportation solution. With recent problems in the Canadian grain handling 
system, we plan to generate grain routings that no longer minimize collective freight rates (as was the 
case under the CWB), but instead optimize route times. Foremost, this objective seems reasonable 
since it will necessarily reduce risk of unreliable wheat deliveries in the system and associated 
charges for port demurrage. Given the existing institutions and relationships among the players in 
the Canadian grain supply chain, this switch of objective focus for the grain system optimization 
problem is more compatible with the objectives of independent profit-seeking grain companies, and 
also represents a move away from the collectivist farmer perspective of the CWB logistics function. 
In addition, since wheat is generally a comparatively low value commodity, greater benefits will 
likely be generated by improving system capacity utilization rather than reducing inventory costs 
for grain handlers and railways (Quorum Corporation 2012). The most important metric for a supply 
chain in this sense is whether it can provide consistent and timely delivery. 
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Our base model is solved using historical industry data in order to re-optimize routings and 
travel times for monthly grain movement. We then examine our base model results in order to 
determine what factors have most affected grain logistics, including identifying any constraints 
leading to bottlenecks and delays. This in turn will lead us to the subsequent analysis where some 
of these constraints are relaxed in order to re-optimize logistics in the grain transportation system. 

Simulation Results and Mapping 

Over the time-frame re-analyzed and simulated here, each month’s grain allocations resulted in a 
spatial overlapping of routes to ports. The occurrence of overlapping routes results from the limited 
number of railway lines available and the clustering of delivery points along the Prairies. In addition, 
there appears to be no visible spatial allocation trend that stays consistent from one month to the 
next, suggesting that each monthly VRP is unique. As one final point, we find that CWB’s East-West 
grain catchments in these months do not emerge from the optimization criterion used here. While 
not entirely surprising, it does show that a new grain handling system will likely generate vastly 
different grain logistics allocations as compared with the old CWB monopoly marketing regime. 

Figure 2 is a set of maps comparing two of our new VRP solutions using minimized time 
travelled. While the maps are mostly similar between the two sample months in spite of the time 
separating the data used, we note any differences between the respective VRP allocations stem 
from how they treat grain located near the center of the region, a region very near to the East-West 
catchment demarcation enforced by the CWB. The maps generated by the VRP simulation are all 
very similar to these and, not surprisingly, most often vary within the central portion of the Prairies. 

More formally, we need to check how well the simulation allocated actual grain demands. See 
Figure 3. We found that over all the months simulated, the total volume of cars allocated to port by 
the model met 92.7% of all wheat export demands at port. But this level of service was somewhat 
inconsistent. For example, during the 2009/10 crop year, the simulation generated monthly variations 
for fulfilling port demands ranging from 61.9% to 99.0%, while the 2010/11 crop year narrowed 
this variation somewhat to between 81.3% and 99.0%. Over the period studied, 18 out of 24 months 
possessed 90% fulfilled port demand or higher. In 2009/10 and 2010/11, port demands were met on 
average by between 92.3% and 94.0%. So while this is a complex and large optimization problem, 
the simulation model is generally able to allocate grain to port demands with a high success rate, in 
comparison to the actual delivery data.

One reason the model cannot route 100% of port demand in each month is caused by the 
distribution of supplies along CN and CP VRP solutions and routings. Wheat supplies and associated 
VRPs within each month are split between CN and CP, as are route demands. In the optimization 
problem, this process limits a CP delivery point from being picked up by a CN routing. While 
there are always sufficient supplies to meet the total port demands, individual port demands are 
distributed between the Class 1 railways (based on regulatory data). As a result of splitting port 
demands between CN and CP, the model often identifies greater supplies available on the CP network 
than demanded, while CN’s port demands for several of the months are greater than the available 
CN supplies. In fact, CP routes were able to deliver 98.8% and 97.9% of total demands each crop 
year while, for example, CN in 2009/10 made only 88.2% of demanded deliveries and 91.6% the 
next year. We believe that the improvement of CN deliveries during 2010/11 was likely the result of 
better balance between elevator supply and port demands. This also indicates that improvements can 
be gained by a better balance of railway provider distribution and supply. The imbalance of supplies 
along each of the railway networks effectively creates a bottleneck, which reduces the efficiency of 
the simulated solutions.
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Figure 2: Simulated Grain Deliveries to Port, Minimum Time Criterion, May 2010 (top) vs. 		
	   June 2011 (bottom) 
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Figure 3: Tracking Simulated Rail Car Deliveries to Ports 

There are other aspects of the base VRP that require further discussion. To start, the base 
model VRP also often showed a tendency to route grain to the ports of Vancouver and Thunder Bay 
over Prince Rupert and Churchill. If there was a high demand for northern (CN served) ports, the 
tendency of the VRP to route grain trains to Thunder Bay and Vancouver created a bottleneck in the 
optimization problem. Given these broad findings, there would appear to be improvements available, 
particularly for grain distribution on the more northern CN rail network. In addition, we allowed 
each solution to be created using several discrete sizes of trains, approximately corresponding to 
train sizes used in reality. Not surprisingly, we always found that the system VRP optimization 
favored larger capacity grain trains over smaller ones. In addition, the southern CP network was 
often optimized using all available routes, both small and large. This situation was likely due to its 
more favorable location within the region, meaning that large grain supplies on elevators on the 
CP network (coupled with smaller trains) could lead to serious inefficiencies with respect to route 
timing in the supply chain.

ALTERNATIVE GRAIN TRANSPORTATION SCENARIOS

In this section, we examine a couple of interesting alternative simulation scenarios using insights 
drawn from our base model results. They offer insight as to the future of the grain handling system 
in the new era in Canada of private grain marketing and logistics. For ease of exposition, each of 
these additional comparative simulations was only conducted for a few specific but representative 
months of the complete data set. See also Gleim (2014). 

Scenario 1 – Larger Trains

The first counterfactual policy simulated off of the base model is referred to as the larger trains 
(LT) scenario. This is simulated to address bottleneck inefficiencies potentially created by smaller 
modular train capacities. This scenario alters the base model routes so as to use fewer sizes of 
small modular trains, and allows us to examine whether policies to increase average modular train 
capacities could also improve efficiencies in the grain transportation problem. 

To test this, whereas the base model assumed six modular train capacities, here these are 
reduced to three. The three modular train capacities imposed are for 50, 100, and 150 car trains. 
Routes larger than 150 cars are not permitted, noting that regional siding data did not uncover any 
extant elevators that possessed the capacity to handle a greater train spot (Informa Economics 2012). 
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In fact, Canadian Pacific Railway stated in 2008 that its average grain train was 114 cars long, a 
level hoped to increase to 168 cars in the future (Vantuono 2011).

Given this, the scenario simulates a policy to increase average capacity of the routes. Further, 
we assume that 90% of routings have greater than 50-car modular trains, or that 50% of modular 
train capacities carry 100 cars, 40% carry 150 cars, and 10% carry 50 cars. Here, the average 
modular train capacity is 115 cars, compared with the base model, which carried 93 cars on average 
in 2009/10 and 102 cars on average during the 2010/11 simulation.

Two simple criteria allow us to compare the base and alternative LT scenarios. First, comparative 
route durations are shown in Table 1. Note that the LT scenario dominates the base case, especially 
in the total hours travelled and total distance covered categories. Overall, we see that the LT scenario 
delivers grain more efficiently than the base by, on average, moving loaded grain for longer durations 
and distances per routing. 

Table 1: Overall Route Durations
Base Larger 

Trains
Total distance travelled (km) 777,848 644,712
Average distance per route 1,583 1,789
Total hours travelled 14,118 11,356
Average hours per route 28.5 31.4
Average car pick-up (minutes) 22.5 18.1

The next criterion measures the ability of the scenario to meet port demands. Table 2 shows 
how each scenario performed using this metric. The base scenario was only improved upon by about 
0.5% as compared with the LT scenario. But it is worth pointing out that other simulated scenarios 
performed much worse than LT at meeting demands, compared with the base (Gleim 2014). 

Table 2: Model Demand Deliveries Routed

Base Larger 
Trains

Cars Moved 38,001 38,059
Cars Demanded 43,270 43,270

Demands routed (%) 87.8% 88.0%

Scenario 2 – Greater Grain Volumes	

This section addresses concerns about future increased grain movements in the system. A very 
basic grain transportation scenario is developed and optimized consisting of higher supplies and 
demands than exist in the data. As motivation, recent statements by the government of Saskatchewan 
concerning the growing issue of food security imply that agronomists expect average grain yields in 
the province to at least double over current levels by the year 2020. 

For the hypothetical scenario, wheat demands and supplies are doubled. In fact, this level 
approximates the actual volumes moved over the past few months in Canada (2013-2014) with 
a bumper grain crop. The effects of such higher grain volumes are evaluated using both the base 
model (HVB – see Figure 4) as well as the large trains policy (HVLR). For tractability, the results 
of the hypothetical higher volume simulation do not account for any changes that increased supplies 
or demands of other agricultural commodities may have on the grain transportation problem. The 
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exercise will demonstrate whether there is enough capacity in the rail system in the face of potential 
increased grain transportation demand.

Figure 4: High Grain Volumes, Base Model (HVB), May 2010

Figure 4 shows grain train routings under the high volume base scenario, and the reader should 
also compare this to the upper map in Figure 1. Results of specific performance metrics in this 
scenario are shown in Table 3. Again, note that these simulations were only conducted for a single 
representative month (May 2010), so the actual metrics listed in the table are somewhat different than 
those listed in previous tables. We tracked performance metrics under both base and LT scenarios, 
each simulated with doubled grain volumes over the entire system. 

Examining the base scenario in this case, we find that transportation efficiencies are actually 
improved with greater grain volumes. For example, route capacities are improved to close to 100% 
efficiency. More importantly, to future agricultural policy considerations, we find that the LT policy 
under larger volumes (HVLT) does not seem to restrict the efficiencies generated by our logistics 
solution. Table 3 shows that these scenarios generated shorter, quicker routes under the high volume 
LT policy. Staying mindful that we did not model other commodity movements in this analysis, we 
offer that contrary to current public statements by the railways, it appears that the current Canadian 
grain transportation system is not at capacity and that the system could realistically accommodate 
additional wheat movement. Finally, we note that the HVLT policy in particular led to greater use 
of the port of Prince Rupert, extending routes serving Prince Rupert much farther East than under 
the base scenario. This finding supports a general feeling in the system that Rupert is currently 
underused relative to its grain handling capacity compared with the other ports.
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Table 3: System Efficiency Metrics, Double Grain Volumes Transported

Base High Volume 
Base (HVB)

Larger 
Trains (LT)

High Volume 
Larger Trains 

(HVLT)
Cars routed 12,971 26,116 13,002 26,106

Cars demanded 13,337 26,674 13,337 26,674
Demands routed (%) 97.3% 97.9% 97.5% 97.9%

Efficiency of routed capacity 98.6% 99.5% 99.3% 99.4%

Total KM 228,673 594,633 224,900 447,460
Change (%) a - 106% - 99.0%

Total hours 5,231 10,228 3,939 7,688
Change (%) b - 95.5% - 95.2%

Average car pick up (min) 24.2 23.5 18.2 17.7

a, b Measures the increased totals as a percentage from the original simulation (base or larger trains).

CONCLUSIONS

The grain handling system in Canada is undergoing significant change. It was the goal of this 
research to examine the nature of changes that might occur under new organizational structure in 
grain handling and transportation. Using historical monthly data on wheat supplies and demands 
through the 2009/10 and 2010/11 crop years, we simulated both base and alternative optimized 
transportation allocations of wheat across Western Canada. Compared to reality and a very different 
logistics criterion, the base simulation outcomes were found to be efficient. 

The base transportation model simulated novel grain transportation re-allocations using actual 
grain system data. The nature of the analysis meant that alternative scenarios could be created 
and simulated as variations on the simulated base solutions. Effectively, these were done to better 
understand system bottlenecks while potentially improving those solutions generated by the base 
transportation scenario.

These latter simulations showed that while the base model did a good job finding a good 
feasible solution for grain logistics, in particular, the larger trains (LT) policy improved system 
logistics allocations over the base results and also reduced effects of system bottlenecks. In effect, 
this latter policy resulted in greater hopper car turnover, marginal increases in deliveries, as well as 
enhanced route capacity efficiencies. Within the current and evolving grain transportation system in 
Canada, we were able to confirm that larger capacity unit grain trains will certainly improve overall 
grain logistics efficiency.

The second set of hypothetical simulation results were done to address concerns about future 
grain transportation volumes to be exported with respect to rail network capacity. In contrast 
to continued public comments made by the Canadian railways about capacity concerns in their 
networks, we find that even if double current typical volumes needed to be moved, rail capacity 
issues should be not a concern with respect to the future movement of grain.

Overall, relying on the assumption that grain handling companies will want to minimize 
transport time rather than the cost to transport grains, we showed that efficient grain routes over 
rail will become larger in capacity and move greater distances. Longer routes will occur between 
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locations, which will need to perform quicker loading or handling services for a grain train. 
Ultimately, our findings confirm that the preference of Canadian Class 1 railroads will be to move 
grain almost exclusively along their main corridors, forming a so-called “pipeline” model for 
commodity movement. Not surprisingly, something akin to this situation was observed during the 
recent (and controversial) 2013 harvest, where limited routes available for grain moved almost 
exclusively along mainline track of either CN or CP (Cross et al. 2014 and Franz-Warkentin 2014).  

Acknowledgements

We would also like to acknowledge comments from poster/seminar participants at the Transportation 
Research Forum and Transportation Research Board Meetings (AT030). The authors also 
acknowledge financial support for S. Gleim from the Gov. of Saskatchewan through the Alliance for 
Food and Bioproducts Innovation (AFBI) program. Details of the program are available at www.
afbi.usask.ca.

References

Canadian Grain Commission. “Canadian Grain Unloaded (Net Tonnes) at Terminal Elevators 
by Railcar Origin. Wheat Unloads by Month Origin Tonnes, 2009-2011” (Microsoft Excel file). 
Winnipeg, Manitoba, May 10, 2012a.

Canadian Grain Commission. “Grain Elevators in Canada Statistics by Crop Year, 2009-2010 to 
2010-2011.” (Microsoft Excel file). Winnipeg, Manitoba, July 23, 2012b.

Canadian Grain Commission. “Grain Statistics Weekly - 2011-12 crop year - Week 52.” Winnipeg, 
Manitoba, August 7, 2012c.

Canadian Wheat Board. “About Us,” 2011. Available online https://www.cwb.ca/public/en/ accessed 
April 14, 2012.

Canadian Wheat Board. “2009-2011 FCR Table” (Microsoft Excel file), with CH (Churchill) and 
PR (Prince Rupert). Winnipeg, Manitoba, 2011.

Cross, B., B. Dyck, T. Fries, B. Glen, B. MacLeod, and D. McMillian. “Short-line Railways get 
Shunted by Ramp-up on Main Lines.” The Western Producer, October 30, 2014.

DMTI Spatial. “CanMap Rail” (Shapefile) DMTI Spatial Mapping Academic Research Tools. 
Markham, ON: Retrieved through Equinox (equinox2.uwo.ca), 2012.

ESRI. “Essential Network Analyst Vocabulary,” 2012a. http://help.arcgis.com/en/arcgisdesktop/10.0/
help/index.html#/Essential_Network_Analyst_vocabulary/004700000003000000/, accessed Feb 2.

ESRI. “Understanding the Network Attributes,” 2012b.   http://help.arcgis.com/en/arcgisdesktop/10.0/
help/index.html#/Understanding_the_network_attribute/00470000000m000000/, accessed Feb 2.

ESRI. “Vehicle Routing Problem Analysis,” 2012c. http://help.arcgis.com/en/arcgisdesktop/10.0/
help/index.html#/Vehicle_routing_problem_analysis/00470000004v000000/, accessed Feb 2. 

ESRI. “Using Parameters with Network Attributes,” 2013.  http://resources.arcgis.com/en/help/
main/10.1/index.html#/Using_parameters_with_network_attributes/00470000000s000000/, 
accessed July 19, 2013. 



111

JTRF Volume 54 No. 3, Fall 2015

Franz-Warkentin, P. “Shortlines Shortchanged in Western Canada.” AGCanada, 2014,   http://www.
agcanada.com/daily/shortlines-shortchanged-in-western-canada, accessed October 17. 

Gleim, S. “Canada’s Grain Handling and Transportation System: A GIS-Based Evaluation of Policy 
Changes.” M.Sc thesis, Dept. of Bioresource Policy, Business and Economics, U. of Saskatchewan, 
Saskatoon, 2014. 

Gray, R. “Preliminary Basis Deduction Calculations for CWB Deliveries in Western Canada: Basis 
Calculations for 1996-97.” Research Report, Saskatoon: University of Saskatchewan, Dept of 
Agricultural Economics, 1996.

Informa Economics. “Review of the Proposed Glencore Acquisition of Viterra and Related 
Transactions.” Consultant Report, prepared for the Saskatchewan Ministry of Agriculture, Memphis, 
TN, 2012.

Oak Ridge National Laboratory. “Current Operational Network QC28.” CTA Railroad Network. 
Shapefile format, Oak Ridge, TN, August, 2012. 

Peterson, B. “Description of the CTA Railroad Network.” CTA Railroad Network, Oak Ridge 
National Laboratory, 2003. http://cta.ornl.gov/transnet/rrdescr.txt, accessed June 10, 2012.

Quorum Corporation. “Annual Report of the Monitor – Canadian Grain Handling and Transportation 
System.” Annual Report, Edmonton, AB, 2012.

Quorum Corporation. “Annual Report 2010-2011 Data Tables.” Edmonton, AB, May, 2012. 

Schmitz, A. and H. Furtan. “The Canadian Wheat Board: Marketing in the New Millennium.” 
Regina, Saskatchewan: Canadian Plains Research Center, 2000.

Scurry, J. “What is GIS?” Edited by National Estuarine Research Reserve System. Water and 
Conservation Division SCDNR Land, 1998. http://www.nerrs.noaa.gov/doc/siteprofile/acebasin/
html/gis_data/gisint2.htm, accessed April, 2012).

Vantuono, W. “Canadian Pacific Charts a Comeback Course,” Railway Age, 2011 (September). 
http://www.railwayage.com/index.php/operations/canadian-pacific-charts-a-comeback-course.
html, accessed November 20, 2013.

Wilson, W., D. Carlson, and B. Dahl. “Logistics and Supply Chain Strategies in Grain Exporting.” 
Agribusiness 20 (4), (2004): 449-464. 

Savannah Gleim has an M.Sc. degree in agricultural economics from the U. of Saskatchewan. She 
is currently a research assistant at the University of Saskatchewan, in the Dept. of Agricultural and 
Resource Economics. 

James Nolan is a professor in the department of Agricultural and Resource Economics at the 
University of Saskatchewan. As well as being actively involved in transportation and agricultural 
policy issues at the federal and provincial level in Canada, Nolan has published extensively on topics 
in transportation economics and policy, focusing mostly on freight transportation and regulation. 
From 2008 to 2011, Nolan was a co-editor of the Canadian Journal of Agricultural Economics. He 
is currently a co-editor of the JTRF.



112



113

JTRF Volume 54 No. 3, Fall 2015

Book Review

Roth, Ralph, and Divall, Colin, eds. From Rail to Road and Back Again? A Century of Transport 
Competition and Interdependency. Modern Economic and Social History Series. Burlington, VT: 
Ashgate/Lund Humphries Publishing Co., 2015. ISN 978-1-4094-4046-8.

From Rail to Road and Back Again?

by Gabriel Roth

The main thesis of this fact-filled book is that rail and road networks both compete and interact with 
one another. Ralf Roth sets out this thesis in its first chapter. His conclusion (page 72) is that “the 
contemporary dominance of road and air transport is not necessarily the end of the story. Factors 
such as energy, emissions, limited resources of space, and gaps in capacity might suddenly shift the 
whole system of global networks into another direction.” This conclusion is not supported by the 
numerous facts in the 14 chapters that follow.

The book contains a wealth of information on transport in the 19th and 20th centuries. The 
countries covered include not only the United Kingdom and United States, but also France, Germany, 
Italy, and other European countries, all of which are usually excluded from books written in English.  
The main text, which is supported by numerous footnotes, is not confined to road and rail transport.  
For example, three chapters deal with the design and introduction of containers developed for use by 
the marine, road, and rail modes, and which still play a key role in their collaboration.

While it is natural that the periods covered by this book are those in which both roads and rails 
were actively used, the omission of Roman roads, and of the United Kingdom and United States 
turnpike roads, weakens the book as readers are not reminded that road transport existed for many 
centuries and in many countries without interacting with rails. An example of this neglect is the 
statement (page 235) that in the United States, “the pressure for road improvements started with 
the bicyclists in the 1880s.” Could the authors not have known of the importance of the massive 
investment in turnpikes in the 19th century United States? In the 10 eastern states alone, in the period 
1800-1830, private investment in turnpike roads exceeded, as a proportion of GDP, government 
expenditure on the construction of the U.S. Interstate Highway System in the period 1956-1995.

The book lacks in-depth discussions of road and rail finances, and the critical fact that today’s 
passengers are generally willing to pay for roads but not for rails, even though rail transport was 
developed commercially, and the idea of paying for passenger or freight carriage by rail is generally 
recognized as acceptable in market economies. Not so with roads. Collecting money for road use 
depended on toll collection and, until the twentieth century, was practicable only for selected toll 
roads. However, the 20th century saw the possibility of charging for road use without requiring 
vehicles to stop to pay tolls. This can be done either by means of surcharges on fuel or tires or, more 
selectively, by electronic means such as the E-ZPass. The implication of such payments for road 
use, and for commercial investment in roads, are not explored in the book, though they are likely to 
influence the conclusion suggested in its title that roads might replace rails. 

Another area neglected in the book is the role of government in promoting and/or impeding 
different transport modes. Thus, in Chapter 1, Roth presents an interesting review of the pros and 
cons of the mobile steam engines, independent of rails, which were introduced in England in the 
1820s and supported by such well-known experts as Thomas Telford, founder of the Institution of 
Civil Engineers. But Roth does not mention the tolls imposed by Parliament on such vehicles in the 
1830s, which were at least six times the levels of the tolls on horse-drawn carriages, although the 
latter caused much more damage to the roads. Nor does he mention the law, revoked in 1894, which 
required each motor vehicle moving on a British road to be preceded by a man carrying a red flag. 
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Those tolls and restrictions, introduced at the behest of rail and horse-carriage interests, delayed 
the introduction of self-driven mechanical road vehicles by some 60 years. To this day, rails enjoy 
massive subsidies in Europe and road development is restricted, despite the substantial fuel taxes 
paid for road use.

Rails provide important services, especially for moving freight over long distances, but the 
book has little to say about this, even about the splendid freight services developed in the United 
States. Rails are also strong in providing underground passenger services in large urban areas. But 
roads (which do not seem to have been defined in this book) have been with us for millennia, while 
rails for less than two centuries. Unlike rails, roads are used in all countries. Rails cannot function 
without roads, but roads can function without rails. Rails for passengers are generally provided at 
a financial loss, roads often at a profit. It therefore seems that rail systems can never replace road 
systems, and that a better title for this interesting book would have been “From Road to Rail and 
Back Again?” 

Gabriel Roth is a transport and privatization consultant. His publications include Paying for 
Roads: The Economics of Traffic Congestion (Penguin Special, 1967); The Private Provision of 
Public Services in Developing Countries (World Bank, 1987); and Roads in a Market Economy 
(Ashgate, 1996). And he edited the 2006 Independent Institute book Street Smart — Competition, 
Entrepreneurship, and the Future of Roads.
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