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1 Introduction

Over the last several decades, global trade has grown tremendously. Between 1990

and today, the value of global trade as a fraction of global domestic product has

increased by 47%.1 The growth in trade translates into growth in international

transportation, which depends critically on the ports. To accommodate increased

trade levels, there has been massive investment in larger vessels to obtain economies

of vessel size (e.g., Fan et al., 2018) and in ports to accommodate larger vessels

(Brooks et al., 2014). However, there is little research that explains the effects of

these investments on port selection or intensity of trade from the port.2

In this paper, we analyze port choice using a theoretical framework based on

the probabilistic Ricardian model in Eaton and Kortum (2002). In our model,

choice probabilities are based on differences in trade costs across ports, and global

trade arises as individual buyers in import markets purchase products from the

port that offers the lowest price. The theoretical framework also allows us to an-

alyze how port-level trade costs influence the intensity of trade using a log-linear

gravity relationship commonly estimated in the trade literature (e.g., Anderson

and Van Wincoop, 2004). One benefit of the gravity model is that its structure

can be exploited to calculate tariff equivalence of non-tariff trade barriers (Bur-

lando, Cristea, and Lee, 2015). The model is then applied to trade of agricultural

products, and in particular, the port choice and the level of trade at the port level

are estimated using data on 134 countries importing from 85 ports in the US be-
1Global trade relative to global GDP has increased from 20 to 30 percent between 1990 and

2017 (https://data.worldbank.org/indicator/NE.EXP.GNFS.ZS).
2There are several port choice studies that specify a random utility model (Anderson et al.

(2009); Veldman et al. (2013); Moya and Feo Valero (2017); Stevens and Corsi (2012)), but these
models are not typically developed in a trade model.
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tween 2003 and 2017. Port choice and the level of trade are examined in terms of

market shares. The result allows us to evaluate how port choice changes as prices

and attributes (channel depth, berthing length) of the port change, and also how

the volume of trade changes.

We find evidence that higher shipping rates reduce the probability a port is

chosen, while deeper ports and ports with longer berthing lengths are more likely

to be selected. On the other hand, we find that the intensive margin of trade from

a port is not affected by port attributes, but responds strongly to shipping rates.

Using the estimates from the log-linear model, and the structure of the theoretical

gravity model, we estimate that a one-dollar increase in the shipping rate has an

equivalent effect on trade intensity as a 5% tariff. Using the estimation results, the

willingness to pay for cost-reducing port attributes yields estimates that suggest

that an additional foot of channel depth is worth roughly $1.34 per ton-mile, and

when evaluated at the average tonnage is equivalent to roughly $36,000. We also

find that berthing length is worth roughly $0.83 per foot using similar methods.

There is heterogeneity across commodities in these willingness to pay figures.one

foot and one additional foot of channel depth is more twice as high for shipments

of soybeans than for other crops.

Next, we calculate the own- and cross-price elasticities across ports from an

increase in the cost of shipping. Then, we estimate the own- and cross-price

elasticities across ports from an increase in port depth. These actions affect the

benefit of using different ports and result in a reallocation of where goods are

exchanged. While and an increase in shipping costs has a similar effect across

ports, we find there is considerable heterogeneity in response to changes in port-

level attributes. For example, a one percent increase in the port of Tacoma’s
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channel depth increases the probability that Tacoma is chosen by 13 percent. In

contrast, a one percent increase in the port of New Orleans’ channel depth increases

the likelihood New Orleans is selected by 2 percent.

The paper provides insights into how shipping costs and port attributes in-

fluence the extensive and intensive margins of trade at US ports, and the results

of the paper have several important policy implications. First, changes in global

trade policy shifts where goods are traded, and as a result which ports are used.

Changes in shipping costs influence which ports are the most competitive in serving

global markets, and as a result, have significant implications for regional economies

that rely on the competitiveness of local ports. For example, a 2014 study found

that full- and part-time employment at deep-water ports in the state of Georgia

contributed to 8.4% of total employment in the state.3 Knowing how changes in

port attributes and shipping costs influence port use has implications for the day

to day operations at ports as well. Empirical evidence suggests that port-level

infrastructure plays an important role in determining port efficiency (Herrera and

Pang, 2008; Munim et al., 2018). Thus, understanding the trade-offs shippers

face when choosing ports can help inform policies aimed at improving efficiency

through port-level infrastructure investment.

The remainder of the paper is organized as follows. In Section 2, we present

the theoretical framework. In Section 3, we discuss the data used in this paper

and how it is processed. In Section 4, we present the empirical results. Finally, we

conclude in Section 5.
3https://www.terry.uga.edu/media/documents/gaports2014study.pdf
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2 Theoretical Framework

In this section, we develop a model that explains trade intensity between a foreign

country a specific port, and the choice of the port through which the trade occurs.

Generally, the model is developed in the spirit of Eaton and Kortum (2002) (here-

after, EK). The level of trade between the country and the port follows directly

from EK. However, as we show below, the model can also be used to explain port

choice.4

In EK, products are produced in a perfectly competitive market. Exporters

are differentiated by their productivity. For example, country i’s productivity at

producing good ω is denoted by zi(ω). Given perfect competition, the cost of

producing one unit of good ω in country i is given by ci
zi(ω)

, where ci is the cost of

inputs. Following EK, country i’s productivity is drawn from a Type II extreme

value distribution:

Fi(z) = Pr{zi(ω) ≤ z} = e−Tiz
−θ

where Ti > 0 represents the aggregate productivity (stock of technology), and θ is

a shape parameter that is common across all countries.

2.1 Prices

The price of shipping good ω from country i to country j, through port k (which

is located in country i) is given by the following relationship:
4Several studies have used the EK framework to examine the choice of trade partner (e.g.,

Heerman, 2018). To our knowledge, no study has used the framework in the context of port
choice.
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pkij(ω) =
ci

zi(ω)
τ kij

Here, τ kij > 1 represents trade costs associated with this trade flow. These

trade costs include factors like the internal shipping costs, external shipping costs,

and port infrastructure, as well as international policy variables like the tariff

rates applied to commodity ω by destination j. As in EK, consumers purchas

goods from the lowest priced supplier. More specifically, consumers in country j

will purchase good ω from country i using the port with the lowest trade costs.

Meaning, conditional on purchasing ω from country i, the price for the good will

be:

pij(ω) = min
k∈i

pkij(ω).

Furthermore, country j only purchases good ω from country i if country i can

offer the lowest price. Thus, the price of good ω paid by country j is given by:

pj(ω) = min
i∈S

pij(ω) = min
i∈S

(min
k∈i

pkij(ω)) = min
i∈S

(min
k∈i

ci
zi(ω)

τ kij) (1)

Equation (1) is the basis for a model of port choice. Country j will be more

likely to purchase a good from country i if i has a low cost of producing the good

(ci) or high productivity (zi(ω)). Conditional on i offering the lowest price, country

j is more likely to chose port k if port k offers the lowest trade costs.

The distribution of productivity implies prices also have a distribution and,

conditional on country i being chosen by country j, the probability that port k ∈ i

can offer a price less than p is given by:
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Gk
ij(p) = Pr{pkij(ω) ≤ p} (2)

and, using the pricing equation, and the Frechete distribution, equation (2) can

be rewritten as:

Gk
ij(p) = 1− Fi(

ci
p
τ kij)

The distribution of port-level prices faced by country j when importing good

ω from country i can be expressed as:

Gij(p) = 1− e−Ti(
ci
p
)−θ

∑
k(τ

k
ij)

−θ
(3)

Finally, the distribution of prices faced by country j across all exporters is can be

shown to be:

Gj(p) = (1− e−
∑
i Ti(

ci
p
)−θ

∑
k(τ

k
ij)

−θ
)(1− e−Ti(

ci
p
)−θ

∑
k(τ

k
ij)

−θ
) (4)

We use the distribution of prices across ports (equation 3) and the distribution

of prices across exporters (equation 4), to define the overall probability of choosing

port k, which is the joint probability of choosing country i and port k within i.

This is is given by:

skij = Pr{pkij(ω) ≤ min
m 6=k∈i

pmij (ω)} ∗ Pr{pij(ω) ≤ min
n6=i∈S

pnj(ω)} (5)

where the first probability is the probability of choosing port k out of all poten-

tial ports conditional on choosing country i, and the second is the probability of
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choosing country i out of all potential exporters. This equation can be rearranged

into:

∫ ∞
0

Πm(1−Gm
ij (p))dG

k
ij(p)

∫ ∞
0

Πn(1−Gnj(p))dGij(p)) (6)

and, after substituting in for the price distributions given by equations (3) and

(4), equation (6) yields the following expression:

skij =
Ti(ciτ

k
ij)
−θ∑

i

∑
k Ti(ciτ

k
ij)
−θ . (7)

Equation (7) is the fraction of goods country j purchases from port k located

in country i. EK shows that given the properties of the Frechete Distribution, the

fraction of goods purchased is equivalent to the fraction of country j’s expenditures

on goods from port k in country i. We interpret this market share as the probability

that a port is chosen.

Given the focus of this project is on exports from the USA, the i subscript

corresponds only to one country. Thus, equation (9) can be simplified as:

skj = Probjk =
τ kj
−θ∑

k τ
k
j
−θ (8)

where technological stock and unit production costs (which are both specific to i)

have canceled out. The left-hand side is the share of exports to country j through

port k, given that the USA has been chosen as the exporting country. This share

depends solely on port-level trade costs.
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Following EK, Waugh (2010), and Heerman (2018), we model trade costs as a

function of bilateral factors, exporter specific factors, and importer specific factors.

In particular, our specification is:

ln(τ kj ) = α1ratejk + α2Depthk + α3Berthingk + γj

where, ratejk is the shipping rate between port k and importer j. The variables

Depthk and Berthingk are the channel depth and total berthing length of port

k, and γj is a destination-specific fixed effect that accounts for factors like GDP.5

When we plug trade costs into equation (8) we get the following expression:

sjk =
exp[β1ratejk + β2Depthk + β3Berthingk + γk]∑
k exp[β1ratejk + β2Depthk + β3Berthingk + γk]

, (9)

which we estimate with a fractional logit model. The parameters on these variables

are a composite of the marginal response and the structural parameter θ, which

is constant. The model also allows for a gravity-like specification. Taking the

natural log of both sides of (9) produces a log-linear gravity-like model. The

intensive margin is estimated using OLS with the following specification.

ln(sjk) = β1ratejk + β2Depthk + β3Berthingk + γk + εjk

(10)

5The actual empirical specification includes time subscripts as well. Thus we can flexibly
control for time-varying destination-specific factors with a destination-year fixed effect.
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where importer fixed effects account for the multi-lateral resistance term in the

denominator as in Anderson and Van Wincoop (2003). Given the context of the

empirical analysis, which only focuses on the USA, exporter fixed effects are not

needed. Further, port-level fixed effects are collinear with port attributes. Thus,

port-level fixed effects are excluded from the intensive margin specification as well.

In the next section, we discuss in detail the data used to estimate the model.

3 Data

The data used to estimate equations (9) and (10) comes from several sources.

These include 1. Trade data from the US Census Trade Online Database; 2. Port

attributes compiled from the World Port Index, the United States Army Corps of

Engineers, and supplemental data from individual port websites; 3. Freight rates

were provided to USDA from Drewry Maritime Research.

3.1 Trade Data

The US Census Trade Online Database is the primary source of data used in

this project. The data are the annual quantity of exports of the four agricultural

commodities studied (wheat, soybeans, corn, and sorghum) from all US customs

ports to all importing countries. We focus specifically on vessel shipments. Thus

we exclude air shipments and rail shipments from the sample. The result is a

sample of 120 customs ports. We observe these ports for the years 2003 to 2017.

Figure 1 displays the location of all 120 ports as well as information on the average

annual export quantity (measured by weight) from each port. The top 10 ports,

in terms of average annual export quantity, are labeled in the figure.
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Figure 1 highlights several important aspects of the data. First, the Gulf

Coast and the Northwest are the two main regions where agricultural exports exit

the USA. Ports by the Great Lakes and on the East Coast export agricultural

commodities at lower values. Second, the figure highlights how geographically

close some of the major ports are to each other. For example, New Orleans is the

top-ranked port in terms of export tonnage, and Gramercy is the third. These two

ports are located 51 miles apart. We treat each customs port in the data separately,

rather than grouping ports into regions, because each port has unique attributes

and aggregating trade across ports would make it difficult to determine how these

port-specific attributes influence trade flows and as the empirical results indicate

there are important differences across the ports in the data. Figures 7, 8, 9, and

10 plot the quantity by commodity. Sorghum exports are heavily concentrated

in the Gulf, while other commodities are exported from a wider range of ports.

The general pattern across products remains the same. Ports in the Gulf and

Northwest export at higher values than ports on the East Coast and Great Lakes

region.

When port-level exports by destination are plotted, several interesting patterns

emerge. Figure 11 displays export values shipped to European countries. While

the Gulf remains a highly used region, the Northwest is much less used to send

goods to Europe. Ports in the Great Lakes region ship higher export values than

most of the ports in the Northwest. Figure 12 displays exports shipped to Latin

American countries. Unsurprisingly, exports are highly concentrated among Gulf

Coast ports. The patterns revealed in these figures highlight the importance of

the distance between ports and importing countries in port-choice decisions.
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Next, we analyze how the use of ports has changed over the sample period.

We present this information in Figure 2, which displays the ranking of ports for

all commodities in each year of the sample. From the figure, it is clear that there

is not much year-to-year variation in the top-ranked ports. Both Baton Rouge,

and Longview saw dramatic increases in use over the sample period. Figures

13, 14, 15, and 16 present the port rankings for corn, soy, wheat, and sorghum,

respectively.6 In these figures, a similar pattern emerges. In general, the top-

ranked ports remain constant over the sample period, but there is more movement

lower in port rankings. Across commodities, the ports that climb in the rankings

tend to be located on the West Coast, while East and Gulf Coast ports tend to

fall out of the top ten. The rise of West Coast ports can be attributed to the shift

in the ranking of US trade partners and is consistent with the results in Blonigen

and Wilson (2013).

3.2 Port Attributes

Through a variety of sources, we compile port-level attribute data for 2016. These

data come from the World Port Index, Army Corps of Engineers, as well as sup-

plemental information from port websites. Our data includes information on the

channel depth and total berthing length. In the context of the choice model, these

variables influence the probability a port is chosen through the effect on trade

costs from a given port. Importers of agricultural products may not directly place

importance on the channel depth of a port, for example, still, the channel depth

factors into the port choice decision through the effect on the port-level price.
6Fewer than fifty ports export soybeans, wheat, and sorghum. This is why these figures

present the rankings for fewer ports.
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Figure 3: Freight Rate Data Coverage

3.3 Freight Rates

We use weekly data on freight rates between regions of the USA and destination

countries from Drewry Maritime Research to predict annual port-level freight rates

that are used in the estimating equation. The data are for shipments from the

Gulf Coast and Pacific Northwest to several countries. The breadth of the data

is displayed in Figure 3. We take advantage of the detailed distance data to

create a measure of port-destination freight rates. Specifically, we use variation

in port-destination shipping distances, shipment value, and variables controlling

for annual fluctuations in freight rates to predict and impute freight rates at the

port-destination-year level.

We measure external shipping distance using data on shipping distances be-

tween US ports and importing country ports, which takes into account geographic

features like the Panama Canal. The data come from the Army Corps of Engi-
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neers database on port-to-port nautical miles. Of the 120 ports used to export

agricultural commodities, the database contains distance measures for 84. How-

ever, these 84 ports comprise the vast majority of annual export tonnage. Because

our trade data is at the port-country level, we use the average distance to ports in

the importing country as a measure of port-country distances.

To predict and impute freight rates, we use a log-linear model in which the

natural log of the freight rate is predicted based on the natural log of distance

and shipment characteristics.7 The fit of the model is shown in Table 1. In each

column of the table, we alter the specification slightly. All columns include the log

of the shipping distance between port k and country j, and columns (2) through

(5) include the log annual tonnage as well. Columns (3) and (4) of the table include

a linear and quadratic time trend, while column (5) include year fixed effects. The

adjusted R2 of the model is highest when year fixed effects are included, where the

model captures 73% of the variation in freight rates. We use the specification in

column (5) of the table to predict and impute the missing freight rates. In Figure

4 we display the relationship between the predicted port-destination freight rates

and the port-destination shipping distances. Freight rates increase with distances

at a decreasing rate.8

7We have also used a random forest regression model to predict freight rates. The random
forest model can flexibly allow for a high-dimension of non-linearity in the regessors (or, attributes
of the forest). The results are qualitatively similar to the results when the OLS mode is used to
predict and impute freight rates.

8The finding that rates increase at a decreasing rate is consistent with the so-called “tapering
principle” (see, Locklin, 1972). The concave ship is a result of the fixed costs associated with
loading and unloading ships is spread out over more miles shipped (Blonigen and Wilson, 2018)
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Table 1: OLS Model of Freight Rates

Dependent variable:

ln(ratejkt)

(1) (2) (3) (4) (5)

ln(distjk) 0.410∗∗∗ 0.408∗∗∗ 0.415∗∗∗ 0.416∗∗∗ 0.415∗∗∗
(0.132) (0.131) (0.130) (0.130) (0.130)

ln(weightjkt) −0.003 −0.003∗∗ −0.003∗∗ −0.003∗∗∗
(0.002) (0.001) (0.001) (0.001)

Time Trend −0.087∗∗∗ -111.670∗∗∗

(0.007) (12.815)

Quadratic Time Trend 21.744∗∗∗
(5.158)

Constant −0.159 −0.118 175.355∗∗∗ 0.142
(1.152) (1.145) (14.230) (1.150)

Observations 2,198 2,198 2,198 2,198 2,198
R2 0.307 0.311 0.628 0.637 0.731
Adjusted R2 0.307 0.311 0.627 0.637 0.730
Year Fixed Effects No No No No Yes

This table presents the results of estimating the OLS regression model used to predict port-
destination-year level freight rates. Errors allow for clustering at the importing country level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 4: Relationship between freight rate and shipping distances (linear model)

3.4 Summary Statistics

Table 2 presents the summary statistics of the main variables, along with infor-

mation on the data source. In the average year, port-level shipping weights are

roughly 25 million kg, and freight rates are roughly $39. The number of obser-

vations falls for the port-attributes because we have data on port-attributes for

2016, and we do not have this information for all of the ports in the data set.

However, the ports for which we do have data on port attributes cover 97% of the

total export tonnage in 2016.

Table 2: Summary Statistics

Variable Meaning Source Mean SD N

Weight Trade Quantity US Census 24.5m kg 188m kg 47,565
Dist Shipping Distances (miles) Army Corps 6577.9 3480.9 47,565
Rate Freight Rate (linear impute) Drewery $39.12 $16.40 47,565
Berthing Total Berthing Length (in 100,000 ft) Multiple Sources 1.15 1.06 2,738
Depth Minimum Channel Depth (ft) Multiple Sources 11.9 3.32 2,738
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Table 3: Summary Statistics by Crop

Commodity Weight Rate Berthing Depth Dist
Wheat 27.5 37.99 1.11 11.95 6552.50
Corn 19.2 37.34 1.15 11.79 5948.70
Sorghum 19.0 37.45 1.27 12.78 6537.43
Soy 36.7 39.46 1.16 11.79 7884.03

Table 3 breaks down the data by crop. Average annual shipments of soybeans

are larger than the other commodities, travel further, and have higher average

freight rates. Sorghum shipments, while the smallest in terms of weight, tend to

exit through ports with deeper channels and longer total berthing lengths.

4 Empirical Results

4.1 Estimation Results

We begin by estimating equation (9) using a fractional logit model. The results are

presented in Table 4. Columns (3) and (4) of the table are estimated only for the

year 2016, and only with the ports for which we have data on port attributes (which

account for roughly 97% of total tonnage in 2016). In the column labeled Intensity,

we estimate a log-linear model with the log of export quantity as the dependent

variable. To account for the fact that our freight rate variable is generated, errors

in the table are calculated using a bootstrap over both the imputation of freight

rates and the estimation of the fractional logit.9

9We bootstrap over both stages of estimation, and allow the bootstrap errors to cluster at the
importing country level. This allows for correlation in the unobservables across port-level trade
flows entering a given country.
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Table 4

(1) (2) (3) (4)
outcome: Probjkt Intensity

Ratejkt -0.113*** -0.113*** -0.203*** -0.217*** -0.186***
(0.0105) (0.0108) (0.0221) (0.0253) (0.051)

Total Berthing Lengthk 0.431*** 0.666*** -0.085
(0.0562) (0.0837) (0.011)

Channel Depthk 0.0500*** 0.0681*** -0.002
(0.0152) (0.0204) (0.029)

Gulf 0.614*** -0.822*** 2.79***
(0.104) (0.232) (0.515)

North Atlantic 0.446*** -1.618*** -1.945 ***
(0.0928) (0.278) (0.637)

North Pacific 0.518*** -0.314 0.432
(0.110) (0.237) (0.601)

South Atlantic -0.307*** -0.764*** -2.561***
(0.115) (0.183) (0.567)

South Pacific 0.420*** -0.334 -1.657 **
(0.108) (0.259) (0.583)

Observations 40,482 40,482 2,255 2,255 754

This table presents the results of estimating the fractional logit model. All columns include
destination, commodity, and year fixed effects. Columns (4) of both panels displays the results
when port attributes are included. The sample is restricted to only 2016 in columns (3) and (4)
due to data availability issues. The column labeled Intensity presents the results of a gravity model
specification, with the log of port level export value as the dependent variable. Errors in the table
are cluster bootstrapped at the importing country level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The results in Table 4 highlight the relevant trade-offs shippers make when

choosing a port. Higher freight rates reduce the probability a port is selected

across all specifications. In column (2), we find that relative to ports on the Great

Lakes (the omitted category), ports in other regions are more desirable choices

for shippers. This relationship changes in column (4) once we control for port

level attributes. Port attributes do not have a statistically significant effect on the

intensity of trade from a port, conditional on the port being chosen. However,

we estimate that a one-dollar increase in the freight rate (an additional dollar per

ton) reduces the quantity of trade from the port by nearly 19%. One benefit of the

gravity trade model is its structure can be exploited to convert marginal effects of

non-tariff barriers into tariff equivalents (Burlando, Cristea, and Lee (2015)). In

our context, the marginal effect of a one-dollar increase in the freight rate can be

translated into a tariff equivalent by scaling it by θ. Following Simonovska and

Waugh (2014), we use a value of θ = 4.12. The tariff-equivalent of a one-dollar

increase in the freight rates is roughly 5%.10

We calculate a shippers’ willingness to pay for a change in port attributes using

the results in column (4). To calculate willingness to pay, we use the marginal effect

associated with the attribute divided by the marginal effect of money, which in this

case, is represented by freight rates. For example, the shipper’s willingness to pay

for an additional foot of channel depth at a port is (0.0556 per foot)/(-$0.0416 per

mile)= -$1.34 per foot per ton. Given that the shipments weights roughly 27,000

tons (from Table 2), this comes to a total of $36,188 per foot. We use a similar

10The tariff equivalent is calculated from β̂1 = −θ ∗α1, where these parameters come from the
theoretical model. In the context of the model, α1 is the tariff equivalent. Thus, with θ = 4.12,
and β̂1 = 19%, the tariff equivalent is roughly 5%. Similar methods are used in
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method to calculate the willingness to pay for each additional foot of berthing

length, and we produce an estimate of roughly $0.83.

We can also use the estimates to simulate choice probabilities. For example,

Figure 5 displays the likelihood that the port of New Orleans is chose based on

different freight rates. The predicted probabilities are generated based on the

estimates from column (4) of Table 5. The x-axis plots freight rates from the port

of New Orleans, and the y-axis plots the choice probability based on the estimated

parameters. The red line corresponds to the choice probability of New Orleans,

and the blue line corresponds to the choice probability for any port other than

New Orleans. As the freight rates from New Orleans increases, the probability

that New Orleans is chosen falls while the probability that an importer chooses a

different port rises.

4.2 Heterogeneity

Next, we estimate equation (9) using the fractional logit model for each crop

separately. Table 5 presents the results. The results are generally similar to the

pooled results in Table 4. Using data on the average tonnage, we calculate the

total willingness to pay for a change in port attributes across commodities. We

show the willingness to pay for port attributes in the table. We estimate that

willingness to pay for berthing length and channel depth is highest for soybeans.

4.3 Elasticities

The port choice model estimated in this paper predicts which port is chosen based

on attributes of the port, characteristics of the shipping route, and characteristics
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Figure 5: Choice Probability for New Orleans
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Table 5: Results by Crop

Wheat Corn Sorghum Soy

Ratejkt -0.270*** -0.324*** -0.372*** -0.219***
(0.0514) (0.0414) (0.0923) (0.0501)

Berthingk 0.557*** 0.749*** 0.521* 1.056***
(0.154) (0.0982) (0.267) (0.152)

Depthk 0.0512 0.0569** 0.193* 0.147***
(0.0397) (0.0269) (0.117) (0.0390)

Gulf 0.942 -1.272*** 13.76*** -1.858***
(1.092) (0.320) (1.242) (0.490)

North Atlantic -1.290 -1.531*** 11.05*** -3.225***
(1.197) (0.328) (1.973) (0.626)

North Pacific 2.615** -0.748* 9.391*** -2.028***
(1.212) (0.421) (2.213) (0.617)

South Atlantic 0.470 -1.279*** 12.52*** -0.474
(0.986) (0.332) (1.141) (0.497)

South Pacific 1.034 -0.202 12.62*** -1.136**
(1.024) (0.364) (1.187) (0.575)

WTP for 1 ft of Berthing $0.62 $0.49 $0.29 $1.94
WTP for 1 ft of Depth $5,748 $3,716 $10,865 $27,154

Observations 528 1,003 199 525

This table presents the results of estimating the fractional logit model for each crop
separately. The linear regression predicted freight rates are used in all columns. All
columns include destination fixed effects. Willingness to pay is calculated based on
the coefficients in the table Errors in the table and evaluated at the sample means.
Errors are cluster bootstrapped at the importing country level. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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of alternative ports and routes. Using the structure of the model, we calculate the

response of shippers to changes in a specific port or route attributes. This allows

us to analyze substitution across ports under counterfactual scenarios.

We begin by analyzing the response to a 1% increase in freight rate for a

given port. This increase in port-specific freight rates makes the given port less

attractive to shippers and may result in shippers substituting to another port to

mitigate the increased trade costs. To estimate the own- and cross-price elasticities

with respect to the increase in freight rates, we first use the estimated model to

predict port choices based on the baseline data. Then, we increase the freight

rate for a single port by 1%, leaving the freight rates of other ports unchanged,

and then we predict port choices using the new data and the estimates of the

model parameters. Elasticities are then calculated based on the differences from

the baseline and simulated port-level shipment quantities.

Given the large number of ports in the data, we present the results for the

top ten largest ports and the results for the largest market; soybean shipments

to China. The results are presented in Table 6. Each port’s own-price elasticity

shows the percent decline in predicted use after a 1% increase in port-specific

freight rates. The cross-price elasticity is the percent increase in the use of other

ports. The results are relatively consistent across ports. A 1% increase in the

port-specific freight rate results in the port losing roughly 5% of their business,

while other ports gain approximately 0.3% in market share.

The second half of Table 6 displays the own- and cross-price elasticities with

respect to a 1% increase in port-specific channel depth. Here, there appears to be

more variation in responses. For example, a 1% increase in the channel depth at

New Orleans increases the probability New Orleans is chosen by only 2% percent.
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Table 6: Elasticities

1% increase in rate 1% increase in Depth
Port Own Price Cross-Price Own Price Cross-Price
New Orleans -6.5% 0.12% 2% -0.3%
Kalama -5.0% 0.28% 7% -0.4%
Longview -5.0% 0.31% 7% -0.4%
Portland, OR -5.0% 0.45% 7% -0.6%
Vancouver -5.0% 0.33% 8% -0.5%
Corpus Christi -7.0% 0.08% 9% -0.1%
Tacoma -4.5% 0.81% 13% -0.07%
Beaumont, TX -6.8% 0.06% 7% -0.07%
Seattle -4.7% 0.62% 5% -0.07%
Mobile -6.7% 0.09% 7% -0.1%

This table presents the own and cross price elasticities from a one percent change
in either the port-destination specific freight rates, or port channel depth. The
results for the top ten ports, in terms of average annual export quantity, are
displayed in the table.

However, a 1% increase in the channel depth at Tacoma increases the likelihood

Tacoma is selected by 13% percent. Cross-price elasticities are small across all

ports.

We display the information in Table 6 in another way in Figure 6. This figure

presents the choice probability for the port of New Orleans at different freight

rates. As the freight rate at the port increases, the choice probability falls. The

red line displays the results for New Orleans using the actual channel depth of the

port (11 feet), while the two dashed lines show the results if the port was five feet

deeper and five feet shallower. The demand for the port of New Orleans does not

change dramatically with channel depth.
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Figure 6: Channel Depth at Port of New Orleans
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5 Conclusion

In this paper, we analyze the trade-offs that shippers of agricultural goods make

when selecting ports for their shipments. Using data on port-level agricultural

imports, port attributes, and shipping costs, we estimate a choice model that

allows us to measure the utility shippers receive from using different ports. We

use the model to back out an estimate of willingness to pay for cost-reducing port

attributes. We also use the model to predict how port choices change when critical

characteristics of the port or shipping route change.

We find that shipping costs reduce the probability a port is chosen. At the

same time, deeper channels, and longer berths increase the likelihood. We also

analyze how these characteristics influence the intensity of trade from a port.

We that shipping costs reduce trade intensity, but port attributes do not have a

statistically significant effect on trade intensity. Using the estimates of the choice

model, we find that shippers are willing to pay roughly $8,000 for an additional

foot of channel depth at a port and that shippers are willing to pay approximately

$21,000 for an increase in total berthing length of 100,000 feet. We also find

that there is heterogeneity in willingness to pay for these attributes across crops.

Shippers are willing to pay more for port attributes for shipments of soybeans than

for other crops.

Understanding how port attributes and shipping costs influence port choice is

highly relevant for policymakers. We contribute to the literature on port choice

and international trade by deriving a fractional logit empirical model from the

probabilistic Ricardian trade model in Eaton and Kortum (2002). This framework

allows us to estimate a choice model as well as analyze trade intensity. The results
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of the paper provide an estimate of how demand for ports changes under potential

infrastructure projects. For example, policymakers may be interested in increased

channel depth to accommodate larger ships. The results of this study offer insights

into how demand for ports will change when channels are deepened, and provide

estimates of how demand for competing ports will change.

Similarly, the results of the study offer insights into how much shippers would

be willing to pay for such infrastructure investments. This information is useful

for cost-benefit analysis. Finally, the results of this study offer insights into how

demand for ports changes with shipping costs vary. Changes to global trade policy

may influence shipping costs between trading partners, and as a result, influence

demand for ports. Given the importance of ports to regional economies, changes

in demand driven by trade policy are relevant at a local level as well.
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