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Abstract

Traffic fatalities in the US have been rising among pedestrians even as they fall among
motorists. Contemporaneously, the US has undergone a significant shift in consumer
preferences for motor vehicles, with larger Sport Utility Vehicles comprising an in-
creased market share. Larger vehicles may pose a risk to pedestrians, increasing the
severity of collisions. I use data covering all fatal vehicle collisions in the US and ex-
ploit heterogeneity in changing vehicle fleets across metros for identification. Between
2000 and 2018, I estimate that replacing the growth in Sport Utility Vehicles with cars
would have averted 1,100 pedestrian deaths. The largest Sport Utility Vehicles appear
particularly culpable for pedestrian deaths.
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1 Introduction

Between 2000 and 2018, motor vehicle crashes killed 724,000 people in the US

including 94,000 pedestrians.1 Figure 1 charts the trends in traffic fatalities for both

vehicle occupants and pedestrians over the 2000-2018 period. While deaths among

motorists have declined over this period, deaths among pedestrians have risen by 32%.

Over the same period the consumer market for private vehicles has shifted towards

larger vehicles and particularly towards Sport Utility Vehicles (SUVs). Larger vehicles

may impose a negative externality on pedestrians by making crashes involving

pedestrians more lethal. I estimate the effect of large vehicle uptake on the pedestrian

fatality rate.

Figure 1: Trends in Traffic Fatalities

The number of fatalities among drivers and their passengers fell by 20% between
2000 and 2018. Over the same period the number of motor vehicle related fatalities
among pedestrians increased by 32%.

Vehicles on US roads became measurably larger between 2000 and 2018. Figure 2

plots changes in vehicle characteristics among all vehicles involved in a fatal crash

between 2000 and 2018. While in 2000, the typical vehicle weighed 1,744 kg, by 2018

the average vehicle had increased in weight by 10% to 1,921 kg (Figure 2A).

Additionally, SUVs increased their prevalence from 10.8% of vehicles to 19.7% (Figure

1National Highway Traffic Safety Administration, Fatality Analysis Reporting System.

1



2B). Over this same period, a new class of very large vehicles began to enter the

consumer market. In 2000 only 2.6% of vehicles involved in fatal crashes weighed

more than 2,500 kg, by 2018 the share had increased fivefold to 12.1% (Figure 2C).2

The increased prevalence of these very large vehicles was mostly attributable to the

popularity of a few large SUVs, particularly the Ford Expedition and the Chevrolet

Suburban and Tahoe.

While larger vehicles are designed to protect their drivers and passengers in the

event of a crash, less concern is given to the effect on pedestrians. Past research in the

safety literature has considered the mechanisms that relate vehicle size to motorist

and pedestrian safety. There are two primary mechanisms that could lead large

vehicles to generate additional harm when hitting a pedestrian. First, the additional

weight means the vehicle will take longer to come to a stop and will strike with more

force as compared to a lighter vehicle. Second, large vehicles have higher front ends,

affecting the point of impact on a pedestrian. A conventional car is likely to strike a

pedestrian in the legs, propelling them over the hood of the vehicle. A vehicle with a

higher front end is likely to make first contact with the pedestrian’s torso or head,

harming vital organs and deflecting their body under the vehicle. In transportation

safety literature, pedestrians hit by light trucks (a category including SUVs, pickups

and minivans) have been found to suffer greater rates of mortality (Simms and Wood,

2006; Tamura et al., 2008) and higher rates of brain injury (Roudsari et al., 2004)

than those hit by cars. Lefler and Gabler (2004) used US data from the 1990s to

estimate that a pedestrian struck by a light truck is two to three times more likely to

die than a pedestrian struck by a car. In a meta-analysis of papers concerned with

pedestrian fatalities, Desapriya et al. (2010) found that the chance of fatal injury

among pedestrians was 50% higher when struck by a light truck compared to a car. I

will test for the effect of both vehicle weight and body type on pedestrian fatalities.

Significant past research has examined the effect of vehicle size on road safety.

The adoption of the Corporate Average Fuel Economy (CAFE) vehicle emission

standards in the US encouraged consumers to purchase lower emission vehicles, which

were likely to be smaller. Crandall and Graham (1989) argued that this incentive

resulted in higher rates of motorist fatalities due to smaller vehicles providing more

limited protection to drivers. The authors pointed out that drivers of smaller vehicles

are more vulnerable in crashes than they would be in a larger vehicle and extrapolate

2Data comes from the national Fatality Analysis Reporting System and the Environmental Protec-
tion Agency’s Fuel Economy Test Car List Database. Data details are included in Section 2.
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Figure 2: Changes in Vehicle Size Among Vehicles Involved in a Fatal Crash

A. Average Weight

B. Sport Utility Vehicles as a Share of all Vehicles

C. Share of Vehicles Over 2,500 kg

Between 2000 and 2018 the average weight of consumer vehicles involved
in a fatal crash increased by 10%, the prevalence of SUVs increased by 78%
and the share of vehicles that are more than 2,500 kg increased by 363%.

this effect across the market. However, this method ignores external safety risks that

larger vehicles may impart by increasing the severity of injury to other motorists and

to pedestrians. Focusing on a subset of crashes from the 1990s, Toy and Hammitt

(2003) estimated the effect of vehicle types on injury severity in the US. Results

indicated that SUVs fared better in protecting their driver in the event of a crash, but

also inflicted more damage onto the drivers of other vehicles compared to cars.

Further analysis of the interaction between light trucks in cars is provided in Gayer
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(2004), who similarly argued that the driver safety improvements provided by large

vehicles may come at the expense of externally imposed risks. Estimates suggested

that an increase in light trucks would increase overall traffic fatalities. Van Ommeren

et al. (2013) focused on the relative weights of opposing vehicles involved in collisions

in the Netherlands, estimating that a 500 kg increase in one car’s weight increased the

risk of a fatality by 70%. Ahmad and Greene (2005) revisited the analysis of Crandall

and Graham (1989) specifically, finding little evidence that CAFE led to higher road

fatalities in aggregate.

White (2004) attempts to directly estimate the marginal effect of drivers

switching from smaller to larger vehicles in the US during 1995-2001. The assessment

showed that for every driver whose life was saved on account of being in a larger

vehicle 4.3 fatalities were created among other drivers, pedestrians and cyclists. The

paper also points out the inability of the legal system to provide incentives for drivers

to internalize external safety risks, as drivers are typically only held responsible in

cases of driver negligence rather than being held responsible for total damages

inflicted.

Anderson (2008) examined cross state variation in light truck prevalence and

traffic fatalities spanning the 1981-2004 period in the US. The author found that

states with higher rates of light truck use had higher rates of traffic fatalities and that

the increase in fatalities was primarily due to an increase in deaths among drivers and

pedestrians who were struck by a light truck rather than a smaller vehicle. Anderson

and Auffhammer (2014) quantified the safety externality of large vehicles, arguing the

US vehicle fleet is inefficiently large and the externality could be corrected through

gasoline taxes. Li (2012) also attempted to quantify the externality of light trucks,

estimating the implied road safety externality of a light truck over its lifetime to be

$2,400.

While there are several past studies linking vehicle size and safety, the current

study is unique in a number of respects. First, I contribute an analysis covering a

much more recent period in the US. The characteristics of the vehicle fleet have

changed substantially during the 2010s. Second, I focus on the effect of vehicle size on

pedestrian fatalities in particular. The sharp increase in pedestrian fatalities in the

US is a recent phenomenon that has not been noted or studied in the economics

literature. Third, I provide a new and novel data source by combining vehicle weight

data from the Environmental Protection Agency (EPA) with crash level data and

vehicle registration data that allows for analysis at the metropolitan level. Fourth,
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while prior studies have focused on vehicle weight, I focus on differences in vehicle

body types, finding that large SUVs are particularly culpable for rising pedestrian

deaths, even conditional on weight.

The relationship between vehicle characteristics and pedestrian fatalities is one

element of overall road safety. Significant economic research has been undertaken to

investigate other causes of traffic fatalities such as vehicle speed (Ang et al., 2020;

Van Benthem, 2015), road congestion (Green et al., 2016) alcohol consumption

(Baughman et al., 2001; Green et al., 2014; Hansen, 2015; Jackson and Owens, 2011;

Levitt and Porter, 2001; Ruhm, 1996), public policy and regulation (Basili and Belloc,

2020; Borsati et al., 2019; Bourgeon and Picard, 2007; Carpenter and Stehr, 2008;

Karaca-Mandic and Ridgeway, 2010; Peltzman, 1975), electronic distractions

(Blattenberger et al., 2013; Oviedo-Trespalacios, 2018) and the driver’s state of mind

(Giulietti et al., 2020). The current study is focused specifically on the effect of

vehicle characteristics on pedestrian fatalities.

The paper will proceed as follows. Section 2 provides information on data

sources. Section 3 discusses the regression methodology. Section 4 provides results

and Section 5 will conclude.

2 Data

I combine data from a number of public sources. Traffic fatality data is taken

from the National Highway Traffic Safety Administration (NHTSA), Fatality Analysis

Reporting System (FARS). The data set is a complete record of all fatal traffic

collisions in the US. To be included in the data the collision must have been on a

public road, involved any type of motor vehicle and caused the death of one or more

individuals.3 The database contains a large number of variables characterizing the

collision, including information on all vehicles and persons that were involved in the

incident. The study period will cover 2000 to 2018. During this period FARS recorded

658,000 crashes that resulted in at least one fatality. These crashes included 994,000

vehicles and 1,672,000 individuals. 102,000 of the individuals were pedestrians.

724,000 individuals, including 94,000 pedestrians, died due to a crash. The enormous

number of fatalities underlines the scope of the public health issue. The national

distribution of crashes causing a pedestrian fatality are shown in Figure 3. Incidents

3To be considered as caused by the vehicle crash, the death must occur within 30 days of the
collision.
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cover all populated areas of the US, and are concentrated in city centers as well as

extending along the interstate highway system. In the main analysis I analyze only

crashes occurring within metropolitan areas, defined according to Core Based

Statistical Area (CBSA) boundaries.

Figure 3: All US Pedestrian Fatalities 2001-2018

HI AK

Each dot corresponds to a vehicle crash that resulted in at least one pedes-
trian fatality. The year 2000 is included in analysis but not in this figure
as observations from 2000 lack latitude and longitude information.

The empirical analysis will base estimates on the rate of deaths per 100,000

residents across metropolitan areas. The sample contains all metropolitan areas in the

US for which data is available.4 The final data set is a balanced panel containing 362

US metropolitan areas with annual observations spanning 2000-2018. Every incident

recorded in the FARS data is accompanied by precise location information. I use the

recorded county of the crash to assign each observation to a metropolitan area. Across

all years and metros, the average rate of traffic fatalities was 13.3 deaths per 100,000

residents. The death rate among vehicle drivers and passengers was 11.8 per 100,000

4Four metros were dropped. The metropolitan areas of Aimes, Iowa; Carson City, Nevada; Fair-
banks, Alaska; and Sandusky, Ohio were dropped because they had no fatal crashes that could be
merged to EPA vehicle weight data in at least one year of analysis.
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while the rate of pedestrian deaths was 1.5 per 100,000. Summary statistics are

provided in Table 1.

For each metropolitan area in the US I construct annual estimates of vehicle

fleets by vehicle body type, relying on both FARS data and vehicle registration data.

FARS includes variables on vehicle body type. In the average metro, 46.3% of

consumer vehicles involved in a fatal crash were cars while 42.5% were light trucks

and 11.1% were motorcycles. I examine the subgroups within the light truck category,

including SUVs (16.1% of vehicles), pickup trucks (20.2%) and minivans (6.1%). I

further brake down the SUV category into Small SUVs (12.2%) and Large SUVs

(3.9%). Large SUVs are defined by FARS to be “full-size multi-purpose vehicles

primarily designed around a shortened pickup truck chassis.” I also include the FARS

category of “Utility Station Wagon” in my definition of Large SUVs.5 Utility Station

Wagons have a similar body type to Large SUVs but are typically even larger,

including an extended passenger area. Identifying Large SUVs will be important as

these vehicles are likely to have body designs that include very high front ends, which

safety tests have suggested could lead to increased pedestrian mortality. The most

common Large SUVs in the data are the Chevrolet Tahoe and Chevrolet Suburban,

which make up 24% and 15% of Large SUVs respectively.

When computing metropolitan vehicle fleet shares I focus on consumer vehicle

shares, omitting the FARS vehicle category for commercial buses and heavy trucks.

Heavy trucks are classified as those exceeding 4,536 kg (10,000 pounds) and account

for 9.2% of vehicles involved in fatal crashes over the study period. I also omit crashes

involving vehicles that fall outside of the typical categories, including construction

and farm equipment, golf carts, and snowmobiles. These unclassified vehicles

comprised 1.7% of all vehicle observations.

In addition to vehicle characteristics I use FARS data to derive a set of control

variables. For each metropolitan area and year I derive the average model year of a

vehicle involved in a crash, the average age of a driver and the share of crashes that

5The Large SUV and Utility Station Wagon categories in FARS data includes the following vehicle
models: Acura MDX; AMC Hummer; Avanti Studebaker XUV; Buick Enclave (2013 on); Cadil-
lac Escalade/Escalade ESV; Chevrolet Full-size Blazer/Suburban/Tahoe/Travellall/Traverse (2013
on)/Yukon XL (2000 on); Chrysler Aspen; Dodge Durango (2004 on); Ford Full-size Bronco (1978
on)/Expedition/Excursion; GMC Acadia (2013 on)/Jimmy (1991-1994)/Yukon (Denali/XL); Honda
Pilot; Hyundai Veracruz (2008 on); Infiniti QX56/QX80; Isuzu Ascender; Jeep Grand Cherokee/Grand
Wagoneer; Kia Mesa/Borrego; Land Rover LR2/LR3/Freelander (2004 on)/Range Rover; Lexus
LX450/470; Lincoln Navigator; Mazda CX-9; Mercedes Benz GL; Nissan Armada; Porsche Cayenne;
Toyota Land Cruiser/Sequoia; and Volkswagen Touareg.
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involved a drunk driver. Average values for these control variables are shown in Table

1.

Table 1: Metropolitan Summary Statistics

Variable Mean Standard Min Max
Deviation

Pedestrian deaths per 100,000 1.523 0.754 0.266 5.797
Motorist deaths per 100,000 11.851 4.467 3.37 34.717
Average model year 1999.7 0.936 1996.5 2001.7
Drunk driver related 0.290 0.058 0.124 0.502
Average driver age 41.281 1.882 35.269 47.779
Car share 0.510 0.062 0.28 0.697
Light truck share 0.454 0.058 0.310 0.642

SUV share 0.185 0.028 0.105 0.282
Small SUV share 0.141 0.025 0.081 0.241
Large SUV share 0.045 0.016 0.009 0.114

Pickup share 0.189 0.058 0.043 0.393
Minivan share 0.078 0.018 0.031 0.126

Motorcycle share 0.033 0.016 0.010 0.168
Average vehicle weight (kg) 1,850 60 1,735 2,068

N = 6,878. Data is at the CBSA-year level. Each of the 362 CBSAs in the data set have 19
observations, one for each year in 2000-2018. Vehicle shares are shown with state level

vehicle registration data adjustments.

To construct vehicle fleet shares at the metropolitan level, I augment FARS data

with annual data on all vehicles registered in the US from the Federal Highway

Administration (FHWA) Highway Statistics data set. The data contains the number

of vehicles registered in each state, broken out by vehicle type. The FHWA state

registration data includes categories for light trucks, SUVs, pickup trucks, minivans

and motorcycles which are consistent with the FARS definitions. The distinction

between “Small” and “Large” SUVs that is made in the FARS data is not available in

the FHWA data. Annual reports from FHWA cover all years of analysis. I make use

of registration data to account for the possibility that different vehicle types may be

over or under represented in fatal crash data.

While prior studies have focused on state level variation, I choose to focus on the

metropolitan area as the unit of analysis. The use of a smaller unit of geography

allows estimates to be based on a larger set of observations that preserves more

spatial variation in the data. There is significant heterogeneity in variables across

metros within the same state, suggesting state level analysis may be masking
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important variation. Relevant transportation system differences are more likely to be

homogenous within metros than states as metro residents share the same

transportation infrastructure for commuting and daily travel. The use of fixed effects

and control variables at the metropolitan level will allow for differences in metro

characteristics to be closely controlled for in regressions.

One limitation of conducting analysis at the metro level is that vehicle

registration data is not available at levels below the state. If estimates of metro

vehicle fleets are derived from crash data, the estimated fleet shares may be biased if

particular vehicle types are more likely to be involved in fatal vehicle crashes. In order

to correct for this bias I revise metro fleet share estimates derived from crash data

according to the disparity between vehicle shares from registration data and crash

data. Table 2 compares the vehicle shares from the FARS crash data, with the

national FHWA vehicle registration data. The largest discrepancy is the stark

overrepresentation of motorcycles in fatal crashes. While only 3.0% of vehicles

registered nationally are motorcycles, 10.6% of vehicles involved in fatal crashes are

motorcycles. For light trucks, I find that 44% of vehicles registered nationally are light

trucks, while 42% of vehicles involved in fatal crashes are light trucks. Table 2

suggests that vehicle shares derived from crash data are relatively representative of

the vehicle fleet at the national level.

To correct metro vehicle share estimates I calculate the over and under

representation of vehicle shares in crash data relative to registration data. National

data suggests that cars are underrepresented in fatal crash data by 11.0%, SUVs are

underrepresented in crash data by 14.1%, pickups are overrepresented by 14.2%,

minivans are underrepresented by 24.7% and motorcycles are overrepreseted by

253.3%. These gaps could be the result of particular vehicle types being intrinsically

less safe, or the gaps could be due to the characteristics of the drivers who choose

particular vehicle types. I first derive nationally adjusted estimates of metro vehicle

fleets by assuming that the different propensity to be involved in a fatal crash across

vehicle types is uniform across the US. For example, if a metropolitan area reported

that 20.0% of vehicles involved in fatal crashes for a particular year were SUVs, I

assume 22.8% of the vehicle fleet were SUVs in that year. The methodology allows me

to generate metro level vehicle fleet estimates that account for the differing crash

propensity across vehicle types. The necessary assumption is that differences in fatal

crash likelihood across vehicle types are identical across metros. In the main

specification, I calculate over and under representation rates at the state level rather
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than the national level. Using state specific adjustments further weakens the

necessary assumption to be that the crash propensity across vehicle types is identical

across metros in the same state. For metros that span multiple states I use population

weighted data from the relevant states to estimate vehicle registration shares. Because

FHWA does not distinguish between Large and Small SUVs I assume that, within the

SUV category, Large and Small SUV shares in crash data are representative of fleet

shares. Adjusted vehicle fleet shares are summarized in Table 1.

I find that adjusting fleet shares by crash likelihood does not substantially affect

results because the vehicle shares derived from FARS are in fact fairly representative

of the overall vehicle fleet, with the exception of motorcycles. I will test for sensitivity

of results to differing vehicle fleet adjustments (Section 4).

Table 2: Vehicle Shares by Data Source

FARS FARS FHWA Registrations
Metros Only National National

Car share 0.479 0.470 0.528
Light truck share 0.412 0.424 0.442

SUV share 0.159 0.159 0.185
Pickup share 0.189 0.201 0.176
Minivan share 0.062 0.061 0.081

Motorcycle share 0.108 0.106 0.030
FARs data is a selective sample of vehicles that have been involved in a crash that resulted

in a fatality. FHWA data covers all registered vehicles nationally. The data from both
sources covers 2000-2018. Fleet shares from the two sources are relatively consistent, with

the exception of motorcycles.

FARS data includes the make, model and model-year of every vehicle involved in

an incident. Using this information I merge on vehicle weight data from the EPA fuel

economy testing data. I am able to match EPA vehicle weights to 82.1% of FARS

vehicle observations. The EPA data includes information for every vehicle that

underwent EPA testing across model years. Data is available from 1984 to present.

The FARS observations that cannot be matched to EPA data include vehicles

manufactured prior to 1984 (2.4% of FARS observations) as well as cases where the

vehicle make and model have no corresponding entry in the EPA data set (15.6% of

FARS observations). The latter case is due to the inconsistent classifications of

vehicles between the NHTSA and the EPA. For example, different assumptions are

made regarding when two slightly different versions of a vehicle should be considered

as different models. There are some cases were the EPA data has information on a
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particular make and model but not for all years. In such cases I assume the vehicle

weight is the same as the most recent model year for which data is available. A

significant amount of manual coding was required so that these data sets could be

merged reliably.

Regressions will control for changes in economic and demographic conditions

through time, across metros. I use demographic variables from the US Census (2000)

and from the American Community Survey (2008-2012 5-year estimates and

2014-2018 5-year estimates). The data is available at the county level which I collapse

to the CBSA level. I linearly interpolate the data to convert the reported data into

annual estimates. I also control for variation in metropolitan GDP across the study

period. I use the Bureau of Economic Analysis (BEA) county level GDP data. The

data set includes GDP estimates for the US between 2002 and 2018. I linearly

extrapolate the GDP estimates to impute values for 2000 and 2001. Due to the use of

metropolitan fixed effects and the relatively gradual change in metropolitan

demographic and economic conditions, results prove to be insensitive regarding the

inclusion of control variables. I show this empirically in Appendix A.

3 Methodology

US metros differ in the average characteristics of their vehicle fleets and have

experienced heterogeneous adoption of light trucks and large vehicles over the study

period. I estimate the impact of vehicle fleet characteristics on road deaths by

regressing the metropolitan pedestrian fatality rate against several measures of vehicle

fleet characteristics. Estimation of the relationship in a panel regression allows for the

inclusion of metropolitan fixed effects, which absorb time invariant heterogeneity

between metros that may be correlated with both fleet characteristics and fatality

rates.

Equation 1 captures the regression equation for estimating the effect of average

vehicle weight. Dmt is the number of deaths per hundred thousand people, where m

indexes a particular metro and t indexes a particular year. Wmt is the average weight

of a vehicle for a particular metro-year observation. Ψmt is a vector of metro-year

control variables. Φm is a vector of metro fixed effects and Λt is a vector of year fixed

effects. The use of year fixed effects will control for national trends through time. I

cluster errors at the metro level in all specifications.
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Dmt = β0 + β1Wmt + Ψmt + Φm + Λt + εmt (1)

I include an array of control variables in Ψmt. From FARS data I include control

variables for the average model year of the vehicle fleet, the average age of a driver

and the share of crashes where alcohol was a factor. Controlling for the average age of

the vehicle fleet provides a proxy for vehicle characteristics and safety features that

change through time. From US Census sources I include control variables for

metropolitan population, population density, the share of local residents with a high

school education, the share of local residents with a college education, the median

household income, race and ethnicity shares (white, Black, Asian, Hispanic), and the

share of the local population who are male. From BEA data I include a control

variable for metropolitan GDP.

Equation 2 is used to estimate the impact of vehicle fleet shares on the pedestrian

fatality rate. When constructing vehicle fleet shares, all vehicles fall into categories of

either cars, light trucks or motorcycles. Within the light truck category there are

SUVs, pickups and minivans. Within the SUV category I further distinguish between

Large and Small SUVs. Equation 2 is composed similarly to Equation 1 but rather

than using vehicle weight I use the share of a metro’s vehicle fleet in each category for

a particular year. In the basic form, I include variables for light truck share (Lmt) and

motorcycle share (Cmt). The omitted category is cars. This model setup allows β1 to

be interpreted as the effect of converting a share of cars to light trucks on pedestrian

fatalities. For example 0.1 × β1 is the effect of converting 10% of the local vehicle fleet

from cars to light trucks on the pedestrian fatality rate. I also perform regressions

that are analogous to Equation 2 but where I break out the light truck category into

the more disaggregated categories.

Dmt = β0 + β1Lmt + β2Cmt + Ψmt + Φm + Λt + εmt (2)

A central concern with arriving at causal estimates will be the possible presence

of omitted variable bias. There may exist unobserved metropolitan characteristics

that are correlated with both road fatalities and vehicle ownership choices. For

example, metros with wide roads or many highways may provide an incentive for

owning a larger vehicle but this type of road infrastructure may directly contribute to

road deaths by accommodating higher vehicle speeds (Lewis-Evans and Charlton,

2006; Manuel et al., 2014). Metropolitan fixed effects control for any omitted variables
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across metros that are time invariant. Supportive of the identification strategy is the

fact that, while metropolitan characteristics such as urban form and road

characteristics evolve slowly, the shift towards larger vehicles has happened relatively

quickly over the study period. If vehicle fleet characteristics contribute to pedestrian

fatalities I expect to find that metros that had different shifts in vehicle fleets

experienced different shifts in pedestrian fatalities. I control for a wide array of time

varying metro characteristics to isolate this statistical relationship. I also provide a

specification where I omit time varying metro characteristics (Appendix A). I find

that the choice to include these controls has almost no effect on results, suggesting

that omitted variable bias is not a significant concern for the specification (Oster,

2019). I also provide a robustness test where I control for the linear trends in

pedestrian fatalities across metros, further isolating the effect of changing vehicle

characteristics, and find results are robust (Appendix B).

An additional barrier to identification is the possibility of reverse causation.

While larger vehicles may contribute to pedestrian fatalities for the reasons given

above, rising traffic fatalities may cause local residents to look for ways to improve

their road safety, potentially influencing their vehicle purchase decisions. This concern

is less relevant to the study of pedestrian fatalities than it is for motorist fatalities.

Motorists have a clear incentive to purchase a larger vehicle when confronted with

deteriorating road safety among motorists. A changing pedestrian fatality rate is not

likely to directly influence the decision of drivers regarding what vehicle to purchase,

as the driver does not bear the risks imposed on pedestrians. However, pedestrian

fatalities and motorist fatalities may be correlated. In a robustness check I will

estimate Equations 1 and 2 while directly controlling for the rate of motorist fatalities,

as a proxy for road safety. I find the results are robust to controlling for this variation.

4 Results

In this section I provide results from the panel regression models as well as

results from robustness checks, alternative specifications and estimates of

counterfactual scenarios. Table 3, Columns 1-5 show estimates of the effects of

average vehicle weight and vehicle fleet shares on the annual number of pedestrian

deaths per 100,000 population. In addition to metro and year fixed effects, regressions

include the array of control variables listed in the previous section. I supply coefficient

estimates for control variables in Appendix A. I adjust estimates of vehicle fleets using
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state level registration data, according to the method described in Section 2. Overall,

I find that larger vehicle fleets are related to more pedestrian fatalities.

Table 3: Effect of Vehicle Characteristics on Pedestrian Fatality Rate

(1) (2) (3) (4) (5)

Vehicle weight (100 kg) 0.036* -0.001
(0.015) (0.019)

Light truck share 0.507**
(0.130)

SUV share 0.348*
(0.163)

Small SUV share 0.228 0.231
(0.186) (0.187)

Big SUV share 0.761* 0.769*
(0.308) (0.335)

Pickup share 0.507** 0.504** 0.512*
(0.179) (0.179) (0.220)

Minivan share 0.507* 0.511* 0.515*
(0.224) (0.225) (0.245)

Motorcycle share -2.181** -2.284** -2.280** -2.272**
(0.566) (0.570) (0.571) (0.594)

CBSA fixed effects? Y Y Y Y Y
Year fixed effects? Y Y Y Y Y
Control variables? Y Y Y Y Y

R2 0.052 0.058 0.057 0.058 0.058
N 6878 6878 6878 6878 6878

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is the number of pedestrian fatalities
per 100,000 population. Control variables include: population, population density, share of
population with a high school diploma, share of population with a college degree, median
household income, share of population who are white, share of population who are Black,
share of population who are Asian, share of population who are Hispanic, share of population
who are male, CBSA GDP, share of fatal crashes that involved alcohol, and average age of
drivers involved in fatal crashes.

Column 1 regresses the pedestrian fatality rate against the average weight of

vehicles involved in fatal crashes, following Equation 1. Every 100 kg increase in

average vehicle weight is associated with an additional .04 fatalities per 100,000

residents. The median observation had an annual pedestrian fatality rate of 1.34

fatalities per 100,000 residents, meaning that a 100 kg increase in average vehicle
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weight is related to a 2.7% increase in pedestrian fatalities for a metro with the

median fatality rate.

Table 3, Column 2 estimates the effect of light trucks. In columns 2-5 the

omitted category is cars, so that the partial effects on vehicle types can be

interpenetrated as the effect of substituting cars with the various vehicle categories.

Converting 10% of vehicles from cars to light trucks is associated with an increase in

the pedestrian fatality rate of .05, or a 3.8% increase for the median metro. Column 3

breaks out light trucks into the constituent categories. I find pickup trucks, minivans

and SUVs all significantly increase pedestrian fatalities relative to cars, with point

estimates suggesting that SUVs are the least harmful to pedestrians of the three light

truck types. Converting 10% of the vehicle fleet from cars to pickups is estimated to

increase the pedestrian fatality rate by .05 deaths per 100,000 residents (3.8% in the

median metro). I find that converting 10% of cars to minivans has the same effect as

converting to pickups. Converting 10% of cars to SUVs would increase pedestrian

deaths by .03 deaths per 100,000, or 2.6% in the median metro. In column 4 I further

break out SUVs into Large and Small SUVs. I find that Small SUVs have no

significant effect, while the share of Large SUVs has a positive relationship with

pedestrian fatalities, with an effect larger than that of pickups or minivans.

Converting 10% of a metro’s vehicle fleet from cars to Large SUVs increases the

pedestrian fatality rate by .08 deaths (5.7% in the median metro).

Across specifications I find that the share of motorcycles has a highly significant,

negative effect on pedestrian deaths. Motorcycles are commonly involved in fatal

crashes, but in most cases the fatality is only the driver of the motorcycle and

pedestrians are rarely victims of fatal crashes involving motorcycles.

Column 5, includes the four light truck categories and average vehicle weight in a

single regression. Interestingly, conditional on vehicle types, vehicle weight appears to

have no effect on the pedestrian fatality rate. However, conditional on weight, the

presence of more light trucks, particularly Large SUVs, pickups and minivans, has a

large and statistically significant effect on pedestrian fatalities. This result suggests

that it is the dimensions and shape of large vehicles that contribute to pedestrian

fatalities, not their weight per se. Prior research has largely used the weight of

vehicles as a proxy for the externally imposed safety risk of large vehicles. In the case

of pedestrian safety, results suggest that body type is more important than weight.

As discussed in Section 2, metropolitan fleet shares derived from crash data will

be biased if particular vehicle types are involved in fatal crashes at different rates.
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Table 4 tests the sensitivity of results to alternative vehicle share corrections. In

columns 1-3 I estimate the effect of substituting cars for light trucks, repeating the

Equation 2 specification. In column 1 I use unadjusted metro vehicle shares taken

directly from FARS crash data. In column 2 I adjust vehicle shares according to their

relative likelihood of being involved in a fatal crash by using a uniform adjustment

based on the difference between national FARS statistics and national FHWA vehicle

registration data. In column 3 I use adjustments based on state level differences in

vehicle prevalence between the two data sources, matching the main specification. In

columns 4-6 I estimate the effect of substituting cars for different light truck types,

testing the sensitivity of results to the different vehicle fleet adjustments. I find that

the estimates of vehicle shares on pedestrian fatalities are robust to differing

approaches to correcting the bias associated with a vehicle type’s propensity to be

involved in a fatal crash. I do find that the adjustment has a significant effect on my

estimate of motorcycles’ effect of pedestrian fatalities, consistent with the large

overrepresentation of motorcycles in crash data.

A concern with identification may be that if there existed time varying omitted

variables that affected both road safety and vehicle choice this could lead to biased

estimates. Also, issues with reverse causality could arise if drivers choose to purchase

larger vehicles at times when road safety is deteriorating. Controlling for the motorist

fatality rate should eliminate much of this bias by introducing a strong proxy for road

safety conditions. On the other hand, motorist fatalities may be an inappropriate

control variable because it is not exogenous to pedestrian fatalities. Table 5 compares

regression results to an alternative specification where I add a control for the rate of

motorist fatalities. Columns 1, 3 and 5 repeat the main regressions using the different

levels of vehicle type aggregations. Columns 2, 4 and 6 add the additional motorist

fatality rate control variable. The estimated effects of vehicle characteristics are

almost identical regardless of whether motorist fatalities are controlled for. If omitted

variable bias or reverse causation issues existed that were related to the general state

of road safety I would expect main coefficient estimates to change substantially. This

result provides additional evidence that the specification is able to isolate exogenous

variation in the vehicle fleet that has a causal effect on the rate of pedestrian fatalities.

While all regressions include CBSA fixed effects, this would not control for the

possibility that particular CBSAs have long run temporal trends that are correlated

with both changing vehicle shares and changing road safety. Such trends would

potentially bias estimates if they are not perfectly correlated with the included control
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Table 4: Effect of Fleet Shares on Pedestrian Fatality Rate, Effect of Vehicle Share
Adjustments

(1) (2) (3) (4) (5) (6)

Light truck share 0.469** 0.450** 0.507**
(0.141) (0.135) (0.130)

SUV share 0.362 0.312 0.348*
(0.190) (0.163) (0.163)

Pickup share 0.469** 0.537** 0.507**
(0.172) (0.196) (0.179)

Minivan share 0.646* 0.488* 0.507*
(0.276) (0.208) (0.224)

Motorcycle share -1.009** -3.535** -2.181** -1.020** -3.573** -2.284**
(0.196) (0.688) (0.566) (0.196) (0.688) (0.570)

Vehicle share adjustment: None National State None National State
CBSA fixed effects? Y Y Y Y Y Y
Year fixed effects? Y Y Y Y Y Y
Control variables? Y Y Y Y Y Y

R2 0.060 0.060 0.058 0.060 0.060 0.057
N 6878 6878 6878 6878 6878 6878

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is the number of pedestrian fatalities
per 100,000 population. Control variables include: population, population density, share of
population with a high school diploma, share of population with a college degree, median
household income, share of population who are white, share of population who are Black,
share of population who are Asian, share of population who are Hispanic, share of population
who are male, CBSA GDP, share of fatal crashes that involved alcohol, and average age of
drivers involved in fatal crashes.

variables. In Appendix B I provide an alternative specification where I add CBSA

specific linear time trends. I find results are almost identical regardless of whether

CBSA time trends are included.

I can use coefficient estimates to estimate counterfactual scenarios of alternative

vehicle adoption. I use the regression coefficients from the most disaggregated

regression (Table 3, column 4) to estimate the number of pedestrian fatalities that

were caused by the presence of particular vehicle types, compared to the

counterfactual scenario where those vehicles were replaced with cars. I multiply the

estimated partial effects by the fleet share held by that vehicle type in each year and

then scale the figure up by the overall population across all metros in the data set.

Figure 4 graphs the implied number of pedestrian fatalities caused by all of the

light truck categories, compared to the counterfactual where all of these vehicles were
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Table 5: Effect of Vehicle Characteristics on Pedestrian Fatality Rate, Controlling for
Motorist Fatalities

(1) (2) (3) (4) (5) (6)

Vehicle weight (100 kg) 0.036* 0.038*
(0.015) (0.015)

Light truck share 0.507** 0.519**
(0.130) (0.129)

SUV share 0.348* 0.349*
(0.163) (0.162)

Pickup share 0.507** 0.527**
(0.179) (0.179)

Minivan share 0.507* 0.517*
(0.224) (0.224)

Motorcycle share -2.181** -2.070** -2.284** -2.174**
(0.566) (0.564) (0.570) (0.568)

Motorist deaths per 100,000 0.016** 0.015** 0.015**
(0.004) (0.004) (0.004)

Vehicle share adjustment: State State State State State State
CBSA fixed effects? Y Y Y Y Y Y
Year fixed effects? Y Y Y Y Y Y
Control variables? Y Y Y Y Y Y

R2 0.052 0.055 0.058 0.061 0.057 0.060
N 6878 6878 6878 6878 6878 6878

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and
are clustered at the CBSA level. The dependent variable is number of pedestrian fatalities
per 100,000 population. Control variables include: population, population density, share of
population with a high school diploma, share of population with a college degree, median
household income, share of population who are white, share of population who are Black,
share of population who are Asian, share of population who are Hispanic, share of population
who are male, CBSA GDP, share of fatal crashes that involved alcohol, and average age of
drivers involved in fatal crashes.

substituted with cars. Across 2000-2018 I estimate that 8,029 pedestrian lives would

have been saved if all light trucks had been cars. The reduction would be equal to

avoiding 9.9% of all pedestrian deaths. In 2000, converting all light trucks to cars

would have spared 375 pedestrians, while by 2018 the figure had grown by 23% to 463

pedestrians. However, accounting for the overall population increase of the metros,

the number of pedestrian deaths attributable to light trucks increased by only 4.4%

on a per capita basis.

I find an increasing impact of SUVs, particularly Large SUVs, on pedestrian
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Figure 4: Annual Pedestrian Deaths Averted if all Light Trucks had been Cars

Relying on estimated partial effects, the figure plots the number of pedes-
trian fatalities that would have been averted if all light trucks were replaced
by cars. Over the entire study period, converting all light trucks to cars
would have prevented 8,029 pedestrian deaths.

fatalities. In 2000, if all SUVs were substituted with cars, there would have been 96

fewer pedestrian fatalities across all metros. By 2018, the substitution of SUVs for

cars would have averted 206 pedestrian fatalities. The change represents a 115%

increase or 81% on a per capita basis. Figure 4 breaks out the effect of Large and

Small SUVs. While Large SUVs are much less common than Small SUVs, their

marginal effect on pedestrian safety is much larger. The 131% increase in Large SUVs

as a share of the vehicle fleet over the study period led to large negative effects on

pedestrian safety. Across all years in the sample period I estimate that replacing all

SUVs with cars would have averted 3,048 pedestrian deaths, with 1,600 of these

deaths attributable to Large SUVs. Maintaining the shares of Small and Large SUVs

across the study period at 2000 levels and replacing that growth with cars would have

averted 1,128 pedestrian fatalities.

Figure 4 shows how the categories of light trucks changed in their contribution to

pedestrian deaths over the study period. The sharp increase in SUVs as a share of

metropolitan consumer vehicles (12.9% to 23.2%) caused a significant increase in

pedestrian deaths. However, over this period the share of pickups and minivans both
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fell. Pickups as a share of vehicles fell from 15.4% to 13.9% and minivans fell from

10.4% to 6.0%. I estimated in Table 3 that both pickups and minivans have a

significantly harmful effect on pedestrian safety relative to cars. The decline in

pickups and minivans worked to counteract the negative pedestrian safety effects of

increased SUVs.

An interesting policy question is what would have happened if the class of Large

SUVs, which were rare on US roads prior to 2000, had instead had the characteristics

of Small SUVs. This counterfactual may relate to a world in which US regulators

limited the sizes of SUVs. Again, using the partial effects estimated in Table 3, I

estimate that if all Large SUVs were replaced with Small SUVs, 1,121 pedestrian

deaths would have been averted, including 80 deaths in 2018 alone.

As noted in the introduction, there was a substantial increase in pedestrian

fatalities during the 2000-2018 period. Between 2000 and 2018 the pedestrian fatality

rate across all metro areas increased by 15%, from 1.72 to 1.98 deaths per 100,000

residents. The overall rise in light trucks over this period was modest, as the rise in

SUVs was buffered by the decline in pickups and minivans. Table 4, column 3

estimates imply that if the prevalence of all light truck categories had remained at the

2000 level across the study period there would have been 377 fewer pedestrian deaths

between 2000 and 2018, including 30 fewer in 2018. Rather than being 1.98 deaths per

100,000 in 2018, the pedestrian fatality rate would have been 1.97 if light truck shares

had remained at 2000 levels. The result suggests that a shift in the vehicle fleet is not

responsible for the overall increase in pedestrian deaths. However, converting all

Large SUVs to Small SUVs would have reduced the 2018 rate to 1.95 and converting

all light trucks to cars would have reduced the rate to 1.81.

The above estimates ignore incidents occurring outside of metropolitan areas.

Metropolitan areas contained 77% of the US population across the study period. To

the extent that non metropolitan areas are experiencing negative pedestrian safety

effects from larger vehicles, the estimates understate the national effect. However, the

effects in less urbanized areas may be markedly different.

A commonly noted motivation for purchasing a large vehicle is the presumed

increase in driver and passenger safety. Potentially, the above estimated increases in

pedestrian fatalities have been offset by an improvement in motorist safety. I repeat

the panel regression specifications (Equations 1 and 2), but rather than estimate the

effect on pedestrians I estimate the effect of vehicle characteristics on the traffic
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fatality rate among drivers and their passengers (Table 6).6 Overall, I find no evidence

of a relationship between the change in vehicle characteristics and changes in motorist

fatalities across metros. None of the light truck categories appear statistically

significant, which suggests that shifting fleet shares have not contributed to improved

motorist safety. The statistically insignificant effect of large vehicles on motorist

fatalities can be attributed to the mechanism proposed in prior literature wherein the

safety benefits imparted to the occupants of large vehicles are counteracted by the

negative safety impacts on other motorists. While statistically insignificant, the

coefficient estimated for the effect of Large SUVs on motorist fatalities is large,

suggesting that Large SUVs may reduce motorist safety in aggregate. The column 5

estimate suggests that a 10 percentage point shift from cars to Large SUVs would

increase motorist fatalities by .20 deaths per 100,000 residents annually, equal to a

1.6% increase in a metro with the median motorist fatality rate.

The share of motorcycles appears to have a large negative effect on the rate of

motorist fatalities. The result is mainly an artifact of motorcycles rarely having

passengers. The average motorcycle involved in a fatal crash carried 1.14 people,

while the average car carried 1.60, the average light truck carried 1.70 and the average

SUV carried 1.80. In the counterfactual where cars are replaced with motorcycles, the

implication is there would be fewer people on the road generally, which would lower

fatalities mechanically. Motorcycles also have a limited ability to harm the occupants

of other vehicles due to their small size. For interpreting coefficients in the motorist

regression results (Table 6), it is possible that larger vehicles may lead to more

fatalities simply because they can accommodate more passengers. Therefore,

coefficient estimates for larger vehicles may be biased upwards slightly. Notably, this

source of bias is not relevant to the pedestrian findings.

The insignificant effect of light trucks on motorist fatalities contrasted with the

highly significant results of the pedestrian fatality regressions provide additional

support to the validity of the main estimation strategy. If the meaningful variation

was related to omitted variables regarding general changes in road safety I would

expect the motorist regressions to also indicate significant effects.

6I estimated the same regression on the cyclist fatality rate but found no statistically significant
coefficients. Cyclist fatalities are rare relative to motorist or pedestrian fatalities, causing imprecision
in estimates.
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Table 6: Effect of Vehicle Characteristics on Vehicle Occupant Fatality Rate

(1) (2) (3) (4) (5)

Weight (100 kg) -0.107 -0.109
(0.063) (0.095)

Light truck share -0.745
(0.508)

SUV share -0.067
(0.661)

Small SUV share -0.391 -0.083
(0.703) (0.774)

Large SUV share 1.046 1.953
(1.120) (1.439)

Pickup share -1.364 -1.370 -0.565
(0.764) (0.764) (1.063)

Minivan share -0.649 -0.639 -0.158
(0.883) (0.884) (0.953)

Motorcycle share -7.406** -7.355** -7.344** -6.517**
(2.138) (2.128) (2.129) (2.134)

CBSA fixed effects? Y Y Y Y Y
Year fixed effects? Y Y Y Y Y
Control variables? Y Y Y Y Y

R2 0.327 0.328 0.328 0.328 0.329
N 6878 6878 6878 6878 6878

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis
and are clustered at the CBSA level. The dependent variable is the number of driver and
passenger fatalities per 100,000 population. Control variables include: population, population
density, share of population with a high school diploma, share of population with a college
degree, median household income, share of population who are white, share of population who
are Black, share of population who are Asian, share of population who are Hispanic, share
of population who are male, CBSA GDP, share of fatal crashes that involved alcohol, and
average age of drivers involved in fatal crashes.

5 Conclusion

I estimate that the popularity of light trucks on US roads is responsible for a

large number of pedestrian deaths. If all light trucks were replaced with cars, over

8,000 pedestrian deaths would have been averted between 2000 and 2018. Vehicle

body types appear to be an important determinant of pedestrian deaths in the

aggregate, strengthening arguments made in the transportation safety literature

regarding the link between larger light trucks and more severe pedestrian injuries.
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Average vehicle size has undergone a sustained increase over the past 20 years,

with no signs of abating. If the popularity of large vehicles continues to rise there is

likely to be a corresponding increase in pedestrian fatalities. Given strict federal

regulation of vehicle safety standards, it is perhaps surprising that there is limited

legislation that restricts the overall size and body type of vehicles with the intent of

improving pedestrian safety. It is unlikely that the purchase decision of car owners

will take account of the safety externalities that large vehicle body types impose on

pedestrians (Lindberg, 2005). These facts suggest there could be societal benefits

from restricting sales of large vehicles, or implementing a Pigouvian tax on particular

vehicles, as was suggested in Anderson (2008), Anderson and Auffhammer (2014) and

Li (2012).

A single consumer’s decision to substitute a car for a light truck raises the

predicted number of pedestrian deaths marginally. I calculate the marginal external

cost of a consumer switching from a car to a light truck. To calculate marginal

external costs I use the US Department of Transportation’s value of a statistical life

($10.45 million in 2020 USD), main regression estimates (Table 3, column 4) and the

fact that there were 46.0 registered vehicles in the US for every 100 residents

according to the FHWA 2018 data. The marginal external cost of switching from a

car to a Large SUV in terms of added pedestrian deaths is $173 annually. The annual

cost associated with switching from a car to a Small SUV, pickup truck or minivan is

$52, $115 and $116 respectively. Optimal Pigouvian taxes that internalize the external

costs of pedestrian fatalities attributable to driving a light truck over a car could be

implemented with annual taxes by vehicle types that are equal to these marginal

external costs. These taxes would be in addition to other taxes that may address

other externalizes of vehicles. Assuming a 10 year vehicle lifespan suggests that if the

tax were applied at the time of sale, the one time tax would need to be roughly 10

times the rates calculated above. For example, Large SUVs would be assessed a point

of sale tax equal to $1,730 in order to internalize the pedestrian fatality risk.

Using the value of a statistical life, the implied economic cost of the 8,029

pedestrian deaths attributable to the presence of light trucks between 2000 and 2018

is $84 billion. The possibility of reducing the pedestrian safety externalities imposed

by large vehicles through regulation could provide significant societal welfare

improvements.

The shift in vehicle types over the study period is unable to account for the

dramatic rise in overall pedestrian deaths. While the increased popularity of SUVs
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caused a significant number of deaths, the declining popularity of pickup trucks and

minivans offset the majority of this trend. Other changes to vehicles and road

conditions over this period are deserving of future study and may be able to account

for the rise in aggregate pedestrian deaths. In particular, the rapid shift in personal

consumer technologies may have impacted road safety during the same period. The

proliferation of smartphones among both drivers and pedestrians presented a new

distraction for road users (Lin and Huang, 2017; Ortiz et al., 2018; Vollrath et al.,

2016). Additionally, the decision of automakers to include complex navigation and

entertainment consoles in vehicles may have served to reduce drivers’ ability to

monitor for pedestrians.
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Appendix A

In the main tables I omit the partial effects of control variables to focus on the

effects of vehicle fleet characteristics. Figure A1 provides information on the

estimated coefficients of control variables. I show results that correspond to the

estimates from Table 3, column 4. The estimated partial effects of control variables

are very similar across all specifications in Table 3.

A1. Control Variable Coefficient Estimates

Coefficient estimates for control variables from the main model specification
are shown. I convert the units of some variables to improve the readability
of the chart. All “shares” range from 0-1. Median household income is
in $10,000s, population is in millions, population density is in 100 persons
per km2, GDP is in billions and average vehicle year and age are in 100s
of years.

I find three control variables have a statistically significant effect on the

pedestrian fatality rate; average driver age, the local college education rate and alcohol

related incidents. An increase in the average age of drivers involved in fatal crashes

within a metro is correlated with fewer pedestrian fatalities. The negative correlation

29



potentially suggests that driver experience improves the safety of pedestrians (Deery,

1999). An increase in a metro’s college education rate is strongly correlated with a

lower pedestrian fatality rate, suggesting education is correlated with road safety. The

share of the population with a high school education does not appear as significant.

The share of fatal crashes that involved alcohol is correlated with fewer

pedestrian fatalities. This at first seems counterintuitive; however, a rise in the share

of incidents involving alcohol could be caused by increased drunk driving, or equally

by a decline in incidents among sober drivers. 41% of crashes that cause a motorist

death involve alcohol, but only 25% of crashes that involve a pedestrian death involve

alcohol. Therefore, a rise in the share of incidents involving alcohol is correlated with

fewer pedestrian deaths but more motorist deaths. I find the drunk driving control

variable is significant and positively related to motorist deaths in the Table 6

regressions.

Despite some control variables being statistically significant, their inclusion does

not significantly affect the main results of the paper. Table A1 repeats the main

regressions of the paper but omits all metro-year control variables. Comparing the

results to those of Table 3 demonstrates that estimates are insensitive to the inclusion

of metro-year level control variables.
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Table A1. Effect of Vehicle Characteristics on Pedestrian Fatality Rate, No Control
Variables

(1) (2) (3) (4) (5)

Vehicle weight (100 kg) 0.037* 0.006
(0.015) (0.019)

Light truck share 0.473**
(0.128)

SUV share 0.337*
(0.162)

Small SUV share 0.194 0.176
(0.185) (0.185)

Big SUV share 0.836** 0.785*
(0.311) (0.344)

Pickup share 0.444* 0.443* 0.397
(0.178) (0.179) (0.215)

Minivan share 0.467* 0.472* 0.445
(0.223) (0.223) (0.244)

Motorcycle share -2.352** -2.458** -2.446** -2.494**
(0.575) (0.579) (0.580) (0.601)

CBSA fixed effects? Y Y Y Y Y
Year fixed effects? Y Y Y Y Y
Control variables? N N N N N

R2 0.042 0.049 0.048 0.049 0.049
N 6878 6878 6878 6878 6878

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is the number of pedestrian fatalities
per 100,000 population.
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Appendix B

I apply a conventional difference in difference regression design as the main

model in the above analysis. In Table B1 I repeat the main analysis but add controls

for metro specific linear time trends. The models estimated are identical to Equations

1 and 2, with the addition of a vector of metro level linear time trends.

Table B1. Effect of Vehicle Characteristics on Pedestrian Fatality Rate, Linear Metro
Time Trends

(1) (2) (3) (4) (5)

Vehicle weight (100 kg) 0.029 -0.017
(0.015) (0.020)

Light truck share 0.503**
(0.134)

SUV share 0.336
(0.175)

Small SUV share 0.236 0.286
(0.200) (0.201)

Big SUV share 0.679* 0.824*
(0.323) (0.352)

Pickup share 0.538** 0.535** 0.665**
(0.186) (0.186) (0.235)

Minivan share 0.582* 0.584* 0.662**
(0.229) (0.230) (0.255)

Motorcycle share -1.842** -1.912** -1.906** -1.768**
(0.613) (0.616) (0.616) (0.644)

CBSA fixed effects? Y Y Y Y Y
Year fixed effects? Y Y Y Y Y
CBSA time trends? Y Y Y Y Y
Control variables? Y Y Y Y Y

R2 0.122 0.127 0.127 0.127 0.127
N 6878 6878 6878 6878 6878

Significance levels: ∗ : 5% ∗∗ : 1%. Standard errors are shown in parenthesis and are
clustered at the CBSA level. The dependent variable is the number of pedestrian fatalities
per 100,000 population.

I find results are robust to the inclusion of metro time trends, with point

estimates and standard errors changing very little between Tables 3 and B1. The

estimate of vehicle weight’s impact on pedestrian fatalities falls short of statistical

significance when time trends are added (column 1), providing more evidence that
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weight is relatively less important than vehicle body type.
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